from transformers import TrainingArguments | |
training_args = TrainingArguments( | |
output_dir="detr-resnet-50_finetuned_cppe5", | |
per_device_train_batch_size=8, | |
num_train_epochs=10, | |
fp16=True, | |
save_steps=200, | |
logging_steps=50, | |
learning_rate=1e-5, | |
weight_decay=1e-4, | |
save_total_limit=2, | |
remove_unused_columns=False, | |
push_to_hub=True, | |
) | |
Finally, bring everything together, and call [~transformers.Trainer.train]: | |
from transformers import Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
data_collator=collate_fn, | |
train_dataset=cppe5["train"], | |
tokenizer=image_processor, | |
) | |
trainer.train() | |
If you have set push_to_hub to True in the training_args, the training checkpoints are pushed to the | |
Hugging Face Hub. |