|
thon |
|
import torch |
|
from PIL import Image |
|
import requests |
|
from transformers import SamModel, SamProcessor |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device) |
|
processor = SamProcessor.from_pretrained("facebook/sam-vit-huge") |
|
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" |
|
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") |
|
mask_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" |
|
segmentation_map = Image.open(requests.get(mask_url, stream=True).raw).convert("RGB") |
|
input_points = [[[450, 600]]] # 2D location of a window in the image |
|
inputs = processor(raw_image, input_points=input_points, segmentation_maps=mask, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
masks = processor.image_processor.post_process_masks( |
|
outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() |
|
) |
|
scores = outputs.iou_scores |
|
|
|
Resources |
|
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with SAM. |