For training, the [ReformerModelWithLMHead] should be used as follows: | |
python | |
input_ids = tokenizer.encode("This is a sentence from the training data", return_tensors="pt") | |
loss = model(input_ids, labels=input_ids)[0] | |
Resources | |
Text classification task guide | |
Question answering task guide | |
Causal language modeling task guide | |
Masked language modeling task guide | |
ReformerConfig | |
[[autodoc]] ReformerConfig | |
ReformerTokenizer | |
[[autodoc]] ReformerTokenizer | |
- save_vocabulary | |
ReformerTokenizerFast | |
[[autodoc]] ReformerTokenizerFast | |
ReformerModel | |
[[autodoc]] ReformerModel | |
- forward | |
ReformerModelWithLMHead | |
[[autodoc]] ReformerModelWithLMHead | |
- forward | |
ReformerForMaskedLM | |
[[autodoc]] ReformerForMaskedLM | |
- forward | |
ReformerForSequenceClassification | |
[[autodoc]] ReformerForSequenceClassification | |
- forward | |
ReformerForQuestionAnswering | |
[[autodoc]] ReformerForQuestionAnswering | |
- forward |