Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
).convert("RGB")
encoding = processor(
image, return_tensors="pt"
) # you can also add all tokenizer parameters here such as padding, truncation
print(encoding.keys())
dict_keys(['input_ids', 'token_type_ids', 'attention_mask', 'bbox', 'image'])
Use case 2: document image classification (training, inference) + token classification (inference), apply_ocr=False
In case one wants to do OCR themselves, one can initialize the image processor with apply_ocr set to
False.