Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(
input_ids,
do_sample=True,
temperature=0.9,
max_length=100,
)
gen_text = tokenizer.batch_decode(gen_tokens)[0]
or in float16 precision:
thon
from transformers import GPTJForCausalLM, AutoTokenizer
import torch
device = "cuda"
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=torch.float16).to(device)
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
prompt = (
"In a shocking finding, scientists discovered a herd of unicorns living in a remote, "
"previously unexplored valley, in the Andes Mountains.