) | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
gen_tokens = model.generate( | |
input_ids, | |
do_sample=True, | |
temperature=0.9, | |
max_length=100, | |
) | |
gen_text = tokenizer.batch_decode(gen_tokens)[0] | |
or in float16 precision: | |
thon | |
from transformers import GPTJForCausalLM, AutoTokenizer | |
import torch | |
device = "cuda" | |
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=torch.float16).to(device) | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") | |
prompt = ( | |
"In a shocking finding, scientists discovered a herd of unicorns living in a remote, " | |
"previously unexplored valley, in the Andes Mountains. |