Usage example | |
Currently one checkpoint is available for DePlot: | |
google/deplot: DePlot fine-tuned on ChartQA dataset | |
thon | |
from transformers import AutoProcessor, Pix2StructForConditionalGeneration | |
import requests | |
from PIL import Image | |
model = Pix2StructForConditionalGeneration.from_pretrained("google/deplot") | |
processor = AutoProcessor.from_pretrained("google/deplot") | |
url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/5090.png" | |
image = Image.open(requests.get(url, stream=True).raw) | |
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt") | |
predictions = model.generate(**inputs, max_new_tokens=512) | |
print(processor.decode(predictions[0], skip_special_tokens=True)) | |
Fine-tuning | |
To fine-tune DePlot, refer to the pix2struct fine-tuning notebook. |