Usage example | |
thon | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
checkpoint = "Salesforce/codegen-350M-mono" | |
model = AutoModelForCausalLM.from_pretrained(checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
text = "def hello_world():" | |
completion = model.generate(**tokenizer(text, return_tensors="pt")) | |
print(tokenizer.decode(completion[0])) | |
def hello_world(): | |
print("Hello World") | |
hello_world() | |
Resources | |
Causal language modeling task guide | |
CodeGenConfig | |
[[autodoc]] CodeGenConfig | |
- all | |
CodeGenTokenizer | |
[[autodoc]] CodeGenTokenizer | |
- save_vocabulary | |
CodeGenTokenizerFast | |
[[autodoc]] CodeGenTokenizerFast | |
CodeGenModel | |
[[autodoc]] CodeGenModel | |
- forward | |
CodeGenForCausalLM | |
[[autodoc]] CodeGenForCausalLM | |
- forward |