Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
Usage example
thon
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "Salesforce/codegen-350M-mono"
model = AutoModelForCausalLM.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
text = "def hello_world():"
completion = model.generate(**tokenizer(text, return_tensors="pt"))
print(tokenizer.decode(completion[0]))
def hello_world():
print("Hello World")
hello_world()
Resources
Causal language modeling task guide
CodeGenConfig
[[autodoc]] CodeGenConfig
- all
CodeGenTokenizer
[[autodoc]] CodeGenTokenizer
- save_vocabulary
CodeGenTokenizerFast
[[autodoc]] CodeGenTokenizerFast
CodeGenModel
[[autodoc]] CodeGenModel
- forward
CodeGenForCausalLM
[[autodoc]] CodeGenForCausalLM
- forward