After conversion, the model and tokenizer can be loaded via: | |
thon | |
from transformers import LlamaForCausalLM, CodeLlamaTokenizer | |
tokenizer = CodeLlamaTokenizer.from_pretrained("codellama/CodeLlama-7b-hf") | |
model = LlamaForCausalLM.from_pretrained("codellama/CodeLlama-7b-hf") | |
PROMPT = '''def remove_non_ascii(s: str) -> str: | |
""" | |
return result | |
''' | |
input_ids = tokenizer(PROMPT, return_tensors="pt")["input_ids"] | |
generated_ids = model.generate(input_ids, max_new_tokens=128) | |
filling = tokenizer.batch_decode(generated_ids[:, input_ids.shape[1]:], skip_special_tokens = True)[0] | |
print(PROMPT.replace("", filling)) | |
def remove_non_ascii(s: str) -> str: | |
""" Remove non-ASCII characters from a string. |