Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
Example of using a model with MeCab and WordPiece tokenization:
thon
import torch
from transformers import AutoModel, AutoTokenizer
bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese")
tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese")
Input Japanese Text
line = "吾輩は猫である。"
inputs = tokenizer(line, return_tensors="pt")
print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾輩 は 猫 で ある 。 [SEP]
outputs = bertjapanese(**inputs)
Example of using a model with Character tokenization:
thon
bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese-char")
tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")
Input Japanese Text
line = "吾輩は猫である。"
inputs = tokenizer(line, return_tensors="pt")
print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾 輩 は 猫 で あ る 。 [SEP]
outputs = bertjapanese(**inputs)
This model was contributed by cl-tohoku.