Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
If you want to try simply you can:
Subclass your pipeline of choice
thon
class MyPipeline(TextClassificationPipeline):
def postprocess():
# Your code goes here
scores = scores * 100
# And here
my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, )
or if you use pipeline function, then:
my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline)
That should enable you to do all the custom code you want.