Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
Available Callbacks
Here is the list of the available [TrainerCallback] in the library:
[[autodoc]] integrations.CometCallback
- setup
[[autodoc]] DefaultFlowCallback
[[autodoc]] PrinterCallback
[[autodoc]] ProgressCallback
[[autodoc]] EarlyStoppingCallback
[[autodoc]] integrations.TensorBoardCallback
[[autodoc]] integrations.WandbCallback
- setup
[[autodoc]] integrations.MLflowCallback
- setup
[[autodoc]] integrations.AzureMLCallback
[[autodoc]] integrations.CodeCarbonCallback
[[autodoc]] integrations.NeptuneCallback
[[autodoc]] integrations.ClearMLCallback
[[autodoc]] integrations.DagsHubCallback
[[autodoc]] integrations.FlyteCallback
[[autodoc]] integrations.DVCLiveCallback
- setup
TrainerCallback
[[autodoc]] TrainerCallback
Here is an example of how to register a custom callback with the PyTorch [Trainer]:
thon
class MyCallback(TrainerCallback):
"A callback that prints a message at the beginning of training"
def on_train_begin(self, args, state, control, **kwargs):
print("Starting training")
trainer = Trainer(
model,
args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
callbacks=[MyCallback], # We can either pass the callback class this way or an instance of it (MyCallback())
)
Another way to register a callback is to call trainer.add_callback() as follows:
thon
trainer = Trainer()
trainer.add_callback(MyCallback)
Alternatively, we can pass an instance of the callback class
trainer.add_callback(MyCallback())
TrainerState
[[autodoc]] TrainerState
TrainerControl
[[autodoc]] TrainerControl