As an example, let's use WhisperModel.forward's docstring: | |
thon | |
r""" | |
Returns: | |
Example: | |
thon | |
>>> import torch | |
>>> from transformers import WhisperModel, WhisperFeatureExtractor | |
>>> from datasets import load_dataset | |
>>> model = WhisperModel.from_pretrained("openai/whisper-base") | |
>>> feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-base") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") | |
>>> input_features = inputs.input_features | |
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id | |
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state | |
>>> list(last_hidden_state.shape) | |
[1, 2, 512] | |
```""" | |
Just run the following line to automatically test every docstring example in the desired file: | |
pytest --doctest-modules <path_to_file_or_dir> | |
If the file has a markdown extention, you should add the --doctest-glob="*.md" argument. |