Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
Like question answering, there are two types of summarization:
extractive: identify and extract the most important sentences from the original text
abstractive: generate the target summary (which may include new words not in the input document) from the original text; the [SummarizationPipeline] uses the abstractive approach
from transformers import pipeline
summarizer = pipeline(task="summarization")
summarizer(
"In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention.