Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
For sigopt, see sigopt object_parameter, it's like following:
def sigopt_hp_space(trial):
return [
{"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
{
"categorical_values": ["16", "32", "64", "128"],
"name": "per_device_train_batch_size",
"type": "categorical",
},
]
For optuna, see optuna object_parameter, it's like following:
def optuna_hp_space(trial):
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
}
Optuna provides multi-objective HPO.