Ahmadzei's picture
added 3 more tables for large emb model
5fa1a76
deepspeed --num_gpus=1 examples/pytorch/translation/run_translation.py \
--deepspeed tests/deepspeed/ds_config_zero2.json \
--model_name_or_path google-t5/t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir --fp16 \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--source_lang en --target_lang ro
DeepSpeed is still useful with just 1 GPU because you can:
Offload some computations and memory to the CPU to make more GPU resources available to your model to use a larger batch size or fit a very large model that normally won't fit.