For example, create a default [Wav2Vec2FeatureExtractor] if you are using Wav2Vec2 for audio classification: | |
from transformers import Wav2Vec2FeatureExtractor | |
w2v2_extractor = Wav2Vec2FeatureExtractor() | |
print(w2v2_extractor) | |
Wav2Vec2FeatureExtractor { | |
"do_normalize": true, | |
"feature_extractor_type": "Wav2Vec2FeatureExtractor", | |
"feature_size": 1, | |
"padding_side": "right", | |
"padding_value": 0.0, | |
"return_attention_mask": false, | |
"sampling_rate": 16000 | |
} | |
If you aren't looking for any customization, just use the from_pretrained method to load a model's default feature extractor parameters. |