File size: 14,994 Bytes
57bdca5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
Before you begin, make sure you have all the necessary libraries installed: pip install transformers datasets evaluate We encourage you to log in to your Hugging Face account to upload and share your model with the community. When prompted, enter your token to log in: from huggingface_hub import notebook_login notebook_login() Load Food-101 dataset Start by loading a smaller subset of the Food-101 dataset from the 🤗 Datasets library. This will give you a chance to experiment and make sure everything works before spending more time training on the full dataset. from datasets import load_dataset food = load_dataset("food101", split="train[:5000]") Split the dataset's train split into a train and test set with the [~datasets.Dataset.train_test_split] method: food = food.train_test_split(test_size=0.2) Then take a look at an example: food["train"][0] {'image': , 'label': 79} Each example in the dataset has two fields: image: a PIL image of the food item label: the label class of the food item To make it easier for the model to get the label name from the label id, create a dictionary that maps the label name to an integer and vice versa: labels = food["train"].features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label Now you can convert the label id to a label name: id2label[str(79)] 'prime_rib' Preprocess The next step is to load a ViT image processor to process the image into a tensor: from transformers import AutoImageProcessor checkpoint = "google/vit-base-patch16-224-in21k" image_processor = AutoImageProcessor.from_pretrained(checkpoint) Apply some image transformations to the images to make the model more robust against overfitting. Here you'll use torchvision's transforms module, but you can also use any image library you like. Crop a random part of the image, resize it, and normalize it with the image mean and standard deviation: from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) size = ( image_processor.size["shortest_edge"] if "shortest_edge" in image_processor.size else (image_processor.size["height"], image_processor.size["width"]) ) _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize]) Then create a preprocessing function to apply the transforms and return the pixel_values - the inputs to the model - of the image: def transforms(examples): examples["pixel_values"] = [_transforms(img.convert("RGB")) for img in examples["image"]] del examples["image"] return examples To apply the preprocessing function over the entire dataset, use 🤗 Datasets [~datasets.Dataset.with_transform] method. The transforms are applied on the fly when you load an element of the dataset: food = food.with_transform(transforms) Now create a batch of examples using [DefaultDataCollator]. Unlike other data collators in 🤗 Transformers, the DefaultDataCollator does not apply additional preprocessing such as padding. from transformers import DefaultDataCollator data_collator = DefaultDataCollator() To avoid overfitting and to make the model more robust, add some data augmentation to the training part of the dataset. Here we use Keras preprocessing layers to define the transformations for the training data (includes data augmentation), and transformations for the validation data (only center cropping, resizing and normalizing). You can use tf.imageor any other library you prefer. from tensorflow import keras from tensorflow.keras import layers size = (image_processor.size["height"], image_processor.size["width"]) train_data_augmentation = keras.Sequential( [ layers.RandomCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), layers.RandomFlip("horizontal"), layers.RandomRotation(factor=0.02), layers.RandomZoom(height_factor=0.2, width_factor=0.2), ], name="train_data_augmentation", ) val_data_augmentation = keras.Sequential( [ layers.CenterCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), ], name="val_data_augmentation", ) Next, create functions to apply appropriate transformations to a batch of images, instead of one image at a time. import numpy as np import tensorflow as tf from PIL import Image def convert_to_tf_tensor(image: Image): np_image = np.array(image) tf_image = tf.convert_to_tensor(np_image) # expand_dims() is used to add a batch dimension since # the TF augmentation layers operates on batched inputs. return tf.expand_dims(tf_image, 0) def preprocess_train(example_batch): """Apply train_transforms across a batch.""" images = [ train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch def preprocess_val(example_batch): """Apply val_transforms across a batch.""" images = [ val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch Use 🤗 Datasets [~datasets.Dataset.set_transform] to apply the transformations on the fly: py food["train"].set_transform(preprocess_train) food["test"].set_transform(preprocess_val) As a final preprocessing step, create a batch of examples using DefaultDataCollator. Unlike other data collators in 🤗 Transformers, the DefaultDataCollator does not apply additional preprocessing, such as padding. from transformers import DefaultDataCollator data_collator = DefaultDataCollator(return_tensors="tf") Evaluate Including a metric during training is often helpful for evaluating your model's performance. You can quickly load an evaluation method with the 🤗 Evaluate library. For this task, load the accuracy metric (see the 🤗 Evaluate quick tour to learn more about how to load and compute a metric): import evaluate accuracy = evaluate.load("accuracy") Then create a function that passes your predictions and labels to [~evaluate.EvaluationModule.compute] to calculate the accuracy: import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels) Your compute_metrics function is ready to go now, and you'll return to it when you set up your training. Train If you aren't familiar with finetuning a model with the [Trainer], take a look at the basic tutorial here! You're ready to start training your model now! Load ViT with [AutoModelForImageClassification]. Specify the number of labels along with the number of expected labels, and the label mappings: from transformers import AutoModelForImageClassification, TrainingArguments, Trainer model = AutoModelForImageClassification.from_pretrained( checkpoint, num_labels=len(labels), id2label=id2label, label2id=label2id, ) At this point, only three steps remain: Define your training hyperparameters in [TrainingArguments]. It is important you don't remove unused columns because that'll drop the image column. Without the image column, you can't create pixel_values. Set remove_unused_columns=False to prevent this behavior! The only other required parameter is output_dir which specifies where to save your model. You'll push this model to the Hub by setting push_to_hub=True (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [Trainer] will evaluate the accuracy and save the training checkpoint. Pass the training arguments to [Trainer] along with the model, dataset, tokenizer, data collator, and compute_metrics function. Call [~Trainer.train] to finetune your model. training_args = TrainingArguments( output_dir="my_awesome_food_model", remove_unused_columns=False, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=16, gradient_accumulation_steps=4, per_device_eval_batch_size=16, num_train_epochs=3, warmup_ratio=0.1, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=True, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=food["train"], eval_dataset=food["test"], tokenizer=image_processor, compute_metrics=compute_metrics, ) trainer.train() Once training is completed, share your model to the Hub with the [~transformers.Trainer.push_to_hub] method so everyone can use your model: trainer.push_to_hub() If you are unfamiliar with fine-tuning a model with Keras, check out the basic tutorial first! To fine-tune a model in TensorFlow, follow these steps: 1. Define the training hyperparameters, and set up an optimizer and a learning rate schedule. 2. Instantiate a pre-trained model. 3. Convert a 🤗 Dataset to a tf.data.Dataset. 4. Compile your model. 5. Add callbacks and use the fit() method to run the training. 6. Upload your model to 🤗 Hub to share with the community. Start by defining the hyperparameters, optimizer and learning rate schedule: from transformers import create_optimizer batch_size = 16 num_epochs = 5 num_train_steps = len(food["train"]) * num_epochs learning_rate = 3e-5 weight_decay_rate = 0.01 optimizer, lr_schedule = create_optimizer( init_lr=learning_rate, num_train_steps=num_train_steps, weight_decay_rate=weight_decay_rate, num_warmup_steps=0, ) Then, load ViT with [TFAutoModelForImageClassification] along with the label mappings: from transformers import TFAutoModelForImageClassification model = TFAutoModelForImageClassification.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ) Convert your datasets to the tf.data.Dataset format using the [~datasets.Dataset.to_tf_dataset] and your data_collator: converting our train dataset to tf.data.Dataset tf_train_dataset = food["train"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ) converting our test dataset to tf.data.Dataset tf_eval_dataset = food["test"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ) Configure the model for training with compile(): from tensorflow.keras.losses import SparseCategoricalCrossentropy loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss) To compute the accuracy from the predictions and push your model to the 🤗 Hub, use Keras callbacks. Pass your compute_metrics function to KerasMetricCallback, and use the PushToHubCallback to upload the model: from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset) push_to_hub_callback = PushToHubCallback( output_dir="food_classifier", tokenizer=image_processor, save_strategy="no", ) callbacks = [metric_callback, push_to_hub_callback] Finally, you are ready to train your model! Call fit() with your training and validation datasets, the number of epochs, and your callbacks to fine-tune the model: model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs, callbacks=callbacks) Epoch 1/5 250/250 [==============================] - 313s 1s/step - loss: 2.5623 - val_loss: 1.4161 - accuracy: 0.9290 Epoch 2/5 250/250 [==============================] - 265s 1s/step - loss: 0.9181 - val_loss: 0.6808 - accuracy: 0.9690 Epoch 3/5 250/250 [==============================] - 252s 1s/step - loss: 0.3910 - val_loss: 0.4303 - accuracy: 0.9820 Epoch 4/5 250/250 [==============================] - 251s 1s/step - loss: 0.2028 - val_loss: 0.3191 - accuracy: 0.9900 Epoch 5/5 250/250 [==============================] - 238s 949ms/step - loss: 0.1232 - val_loss: 0.3259 - accuracy: 0.9890 Congratulations! You have fine-tuned your model and shared it on the 🤗 Hub. You can now use it for inference! For a more in-depth example of how to finetune a model for image classification, take a look at the corresponding PyTorch notebook. Inference Great, now that you've fine-tuned a model, you can use it for inference! Load an image you'd like to run inference on: ds = load_dataset("food101", split="validation[:10]") image = ds["image"][0] The simplest way to try out your finetuned model for inference is to use it in a [pipeline]. Instantiate a pipeline for image classification with your model, and pass your image to it: from transformers import pipeline classifier = pipeline("image-classification", model="my_awesome_food_model") classifier(image) [{'score': 0.31856709718704224, 'label': 'beignets'}, {'score': 0.015232225880026817, 'label': 'bruschetta'}, {'score': 0.01519392803311348, 'label': 'chicken_wings'}, {'score': 0.013022331520915031, 'label': 'pork_chop'}, {'score': 0.012728818692266941, 'label': 'prime_rib'}] You can also manually replicate the results of the pipeline if you'd like: Load an image processor to preprocess the image and return the input as PyTorch tensors: from transformers import AutoImageProcessor import torch image_processor = AutoImageProcessor.from_pretrained("my_awesome_food_model") inputs = image_processor(image, return_tensors="pt") Pass your inputs to the model and return the logits: from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("my_awesome_food_model") with torch.no_grad(): logits = model(**inputs).logits Get the predicted label with the highest probability, and use the model's id2label mapping to convert it to a label: predicted_label = logits.argmax(-1).item() model.config.id2label[predicted_label] 'beignets' Load an image processor to preprocess the image and return the input as TensorFlow tensors: from transformers import AutoImageProcessor image_processor = AutoImageProcessor.from_pretrained("MariaK/food_classifier") inputs = image_processor(image, return_tensors="tf") Pass your inputs to the model and return the logits: from transformers import TFAutoModelForImageClassification model = TFAutoModelForImageClassification.from_pretrained("MariaK/food_classifier") logits = model(**inputs).logits Get the predicted label with the highest probability, and use the model's id2label mapping to convert it to a label: predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) model.config.id2label[predicted_class_id] 'beignets' |