File size: 563 Bytes
5fa1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
processed_dataset = flat_dataset.map(preprocess_data, batched=True, remove_columns=['question','question_type', 'question_id', 'image_id', 'answer_type', 'label.ids', 'label.weights']) processed_dataset Dataset({ features: ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values', 'pixel_mask', 'labels'], num_rows: 200 }) As a final step, create a batch of examples using [DefaultDataCollator]: from transformers import DefaultDataCollator data_collator = DefaultDataCollator() Train the model You’re ready to start training your model now! |