File size: 863 Bytes
5fa1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
Define two separate transformation functions: - training data transformations that include image augmentation - validation data transformations that only transpose the images, since computer vision models in 🤗 Transformers expect channels-first layout import tensorflow as tf def aug_transforms(image): image = tf.keras.utils.img_to_array(image) image = tf.image.random_brightness(image, 0.25) image = tf.image.random_contrast(image, 0.5, 2.0) image = tf.image.random_saturation(image, 0.75, 1.25) image = tf.image.random_hue(image, 0.1) image = tf.transpose(image, (2, 0, 1)) return image def transforms(image): image = tf.keras.utils.img_to_array(image) image = tf.transpose(image, (2, 0, 1)) return image Next, create two preprocessing functions to prepare batches of images and annotations for the model. |