File size: 1,223 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import torchvision
class CocoDetection(torchvision.datasets.CocoDetection):
     def init(self, img_folder, image_processor, ann_file):
         super().init(img_folder, ann_file)
         self.image_processor = image_processor

     def getitem(self, idx):
         # read in PIL image and target in COCO format
         img, target = super(CocoDetection, self).getitem(idx)
         # preprocess image and target: converting target to DETR format,
         # resizing + normalization of both image and target)
         image_id = self.ids[idx]
         target = {"image_id": image_id, "annotations": target}
         encoding = self.image_processor(images=img, annotations=target, return_tensors="pt")
         pixel_values = encoding["pixel_values"].squeeze()  # remove batch dimension
         target = encoding["labels"][0]  # remove batch dimension
         return {"pixel_values": pixel_values, "labels": target}

im_processor = AutoImageProcessor.from_pretrained("devonho/detr-resnet-50_finetuned_cppe5")
path_output_cppe5, path_anno = save_cppe5_annotation_file_images(cppe5["test"])
test_ds_coco_format = CocoDetection(path_output_cppe5, im_processor, path_anno)

Finally, load the metrics and run the evaluation.