File size: 1,189 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Tips:

To convert the model, you need to clone the original repository using git clone https://github.com/persimmon-ai-labs/adept-inference, then get the checkpoints:

git clone https://github.com/persimmon-ai-labs/adept-inference
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar
tar -xvf 8b_base_model_release.tar
python src/transformers/models/persimmon/convert_persimmon_weights_to_hf.py  --input_dir /path/to/downloaded/persimmon/weights/ --output_dir /output/path \
    --pt_model_path /path/to/8b_chat_model_release/iter_0001251/mp_rank_00/model_optim_rng.pt
    --ada_lib_path /path/to/adept-inference
For the chat model:

wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar
tar -xvf 8b_base_model_release.tar
Thereafter, models can be loaded via:

from transformers import PersimmonForCausalLM, PersimmonTokenizer
model = PersimmonForCausalLM.from_pretrained("/output/path")
tokenizer = PersimmonTokenizer.from_pretrained("/output/path")

Perismmon uses a sentencepiece based tokenizer, with a Unigram model.