File size: 697 Bytes
5fa1a76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
🥳 
Training loop
To keep track of your training progress, use the tqdm library to add a progress bar over the number of training steps:

from tqdm.auto import tqdm
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
     for batch in train_dataloader:
         batch = {k: v.to(device) for k, v in batch.items()}
         outputs = model(**batch)
         loss = outputs.loss
         loss.backward()

         optimizer.step()
         lr_scheduler.step()
         optimizer.zero_grad()
         progress_bar.update(1)

Evaluate
Just like how you added an evaluation function to [Trainer], you need to do the same when you write your own training loop.