File size: 696 Bytes
5fa1a76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
Modify any of the [Wav2Vec2FeatureExtractor] parameters to create your custom feature extractor: from transformers import Wav2Vec2FeatureExtractor w2v2_extractor = Wav2Vec2FeatureExtractor(sampling_rate=8000, do_normalize=False) print(w2v2_extractor) Wav2Vec2FeatureExtractor { "do_normalize": false, "feature_extractor_type": "Wav2Vec2FeatureExtractor", "feature_size": 1, "padding_side": "right", "padding_value": 0.0, "return_attention_mask": false, "sampling_rate": 8000 } Processor For models that support multimodal tasks, 🤗 Transformers offers a processor class that conveniently wraps processing classes such as a feature extractor and a tokenizer into a single object. |