Spaces:
Sleeping
Sleeping
Upload chestXRay_deploy.ipynb
Browse files- chestXRay_deploy.ipynb +930 -0
chestXRay_deploy.ipynb
ADDED
@@ -0,0 +1,930 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/"
|
23 |
+
},
|
24 |
+
"id": "H7ENjELwQyjR",
|
25 |
+
"outputId": "95d2f8a3-9d3f-442f-8106-bd4c89521476"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"output_type": "stream",
|
30 |
+
"name": "stdout",
|
31 |
+
"text": [
|
32 |
+
"Overwriting requirements.txt\n"
|
33 |
+
]
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"source": [
|
37 |
+
"%%writefile requirements.txt\n",
|
38 |
+
"gradio\n",
|
39 |
+
"tensorflow\n",
|
40 |
+
"numpy\n",
|
41 |
+
"pillow\n",
|
42 |
+
"opencv-python-headless\n"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"source": [
|
48 |
+
"!pip install gradio"
|
49 |
+
],
|
50 |
+
"metadata": {
|
51 |
+
"id": "fbc_INKXRIg-"
|
52 |
+
},
|
53 |
+
"execution_count": null,
|
54 |
+
"outputs": []
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"source": [
|
59 |
+
"from google.colab import files\n",
|
60 |
+
"\n",
|
61 |
+
"uploaded = files.upload()\n",
|
62 |
+
"\n"
|
63 |
+
],
|
64 |
+
"metadata": {
|
65 |
+
"colab": {
|
66 |
+
"base_uri": "https://localhost:8080/",
|
67 |
+
"height": 73
|
68 |
+
},
|
69 |
+
"id": "EUidXLRmSQs9",
|
70 |
+
"outputId": "bb6a5fac-a734-4aa8-8fac-75ebbe6dbbff"
|
71 |
+
},
|
72 |
+
"execution_count": null,
|
73 |
+
"outputs": [
|
74 |
+
{
|
75 |
+
"output_type": "display_data",
|
76 |
+
"data": {
|
77 |
+
"text/plain": [
|
78 |
+
"<IPython.core.display.HTML object>"
|
79 |
+
],
|
80 |
+
"text/html": [
|
81 |
+
"\n",
|
82 |
+
" <input type=\"file\" id=\"files-db89ec8f-2417-43fa-a522-3ace03ec68d3\" name=\"files[]\" multiple disabled\n",
|
83 |
+
" style=\"border:none\" />\n",
|
84 |
+
" <output id=\"result-db89ec8f-2417-43fa-a522-3ace03ec68d3\">\n",
|
85 |
+
" Upload widget is only available when the cell has been executed in the\n",
|
86 |
+
" current browser session. Please rerun this cell to enable.\n",
|
87 |
+
" </output>\n",
|
88 |
+
" <script>// Copyright 2017 Google LLC\n",
|
89 |
+
"//\n",
|
90 |
+
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
91 |
+
"// you may not use this file except in compliance with the License.\n",
|
92 |
+
"// You may obtain a copy of the License at\n",
|
93 |
+
"//\n",
|
94 |
+
"// http://www.apache.org/licenses/LICENSE-2.0\n",
|
95 |
+
"//\n",
|
96 |
+
"// Unless required by applicable law or agreed to in writing, software\n",
|
97 |
+
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
98 |
+
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
99 |
+
"// See the License for the specific language governing permissions and\n",
|
100 |
+
"// limitations under the License.\n",
|
101 |
+
"\n",
|
102 |
+
"/**\n",
|
103 |
+
" * @fileoverview Helpers for google.colab Python module.\n",
|
104 |
+
" */\n",
|
105 |
+
"(function(scope) {\n",
|
106 |
+
"function span(text, styleAttributes = {}) {\n",
|
107 |
+
" const element = document.createElement('span');\n",
|
108 |
+
" element.textContent = text;\n",
|
109 |
+
" for (const key of Object.keys(styleAttributes)) {\n",
|
110 |
+
" element.style[key] = styleAttributes[key];\n",
|
111 |
+
" }\n",
|
112 |
+
" return element;\n",
|
113 |
+
"}\n",
|
114 |
+
"\n",
|
115 |
+
"// Max number of bytes which will be uploaded at a time.\n",
|
116 |
+
"const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
|
117 |
+
"\n",
|
118 |
+
"function _uploadFiles(inputId, outputId) {\n",
|
119 |
+
" const steps = uploadFilesStep(inputId, outputId);\n",
|
120 |
+
" const outputElement = document.getElementById(outputId);\n",
|
121 |
+
" // Cache steps on the outputElement to make it available for the next call\n",
|
122 |
+
" // to uploadFilesContinue from Python.\n",
|
123 |
+
" outputElement.steps = steps;\n",
|
124 |
+
"\n",
|
125 |
+
" return _uploadFilesContinue(outputId);\n",
|
126 |
+
"}\n",
|
127 |
+
"\n",
|
128 |
+
"// This is roughly an async generator (not supported in the browser yet),\n",
|
129 |
+
"// where there are multiple asynchronous steps and the Python side is going\n",
|
130 |
+
"// to poll for completion of each step.\n",
|
131 |
+
"// This uses a Promise to block the python side on completion of each step,\n",
|
132 |
+
"// then passes the result of the previous step as the input to the next step.\n",
|
133 |
+
"function _uploadFilesContinue(outputId) {\n",
|
134 |
+
" const outputElement = document.getElementById(outputId);\n",
|
135 |
+
" const steps = outputElement.steps;\n",
|
136 |
+
"\n",
|
137 |
+
" const next = steps.next(outputElement.lastPromiseValue);\n",
|
138 |
+
" return Promise.resolve(next.value.promise).then((value) => {\n",
|
139 |
+
" // Cache the last promise value to make it available to the next\n",
|
140 |
+
" // step of the generator.\n",
|
141 |
+
" outputElement.lastPromiseValue = value;\n",
|
142 |
+
" return next.value.response;\n",
|
143 |
+
" });\n",
|
144 |
+
"}\n",
|
145 |
+
"\n",
|
146 |
+
"/**\n",
|
147 |
+
" * Generator function which is called between each async step of the upload\n",
|
148 |
+
" * process.\n",
|
149 |
+
" * @param {string} inputId Element ID of the input file picker element.\n",
|
150 |
+
" * @param {string} outputId Element ID of the output display.\n",
|
151 |
+
" * @return {!Iterable<!Object>} Iterable of next steps.\n",
|
152 |
+
" */\n",
|
153 |
+
"function* uploadFilesStep(inputId, outputId) {\n",
|
154 |
+
" const inputElement = document.getElementById(inputId);\n",
|
155 |
+
" inputElement.disabled = false;\n",
|
156 |
+
"\n",
|
157 |
+
" const outputElement = document.getElementById(outputId);\n",
|
158 |
+
" outputElement.innerHTML = '';\n",
|
159 |
+
"\n",
|
160 |
+
" const pickedPromise = new Promise((resolve) => {\n",
|
161 |
+
" inputElement.addEventListener('change', (e) => {\n",
|
162 |
+
" resolve(e.target.files);\n",
|
163 |
+
" });\n",
|
164 |
+
" });\n",
|
165 |
+
"\n",
|
166 |
+
" const cancel = document.createElement('button');\n",
|
167 |
+
" inputElement.parentElement.appendChild(cancel);\n",
|
168 |
+
" cancel.textContent = 'Cancel upload';\n",
|
169 |
+
" const cancelPromise = new Promise((resolve) => {\n",
|
170 |
+
" cancel.onclick = () => {\n",
|
171 |
+
" resolve(null);\n",
|
172 |
+
" };\n",
|
173 |
+
" });\n",
|
174 |
+
"\n",
|
175 |
+
" // Wait for the user to pick the files.\n",
|
176 |
+
" const files = yield {\n",
|
177 |
+
" promise: Promise.race([pickedPromise, cancelPromise]),\n",
|
178 |
+
" response: {\n",
|
179 |
+
" action: 'starting',\n",
|
180 |
+
" }\n",
|
181 |
+
" };\n",
|
182 |
+
"\n",
|
183 |
+
" cancel.remove();\n",
|
184 |
+
"\n",
|
185 |
+
" // Disable the input element since further picks are not allowed.\n",
|
186 |
+
" inputElement.disabled = true;\n",
|
187 |
+
"\n",
|
188 |
+
" if (!files) {\n",
|
189 |
+
" return {\n",
|
190 |
+
" response: {\n",
|
191 |
+
" action: 'complete',\n",
|
192 |
+
" }\n",
|
193 |
+
" };\n",
|
194 |
+
" }\n",
|
195 |
+
"\n",
|
196 |
+
" for (const file of files) {\n",
|
197 |
+
" const li = document.createElement('li');\n",
|
198 |
+
" li.append(span(file.name, {fontWeight: 'bold'}));\n",
|
199 |
+
" li.append(span(\n",
|
200 |
+
" `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
|
201 |
+
" `last modified: ${\n",
|
202 |
+
" file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
|
203 |
+
" 'n/a'} - `));\n",
|
204 |
+
" const percent = span('0% done');\n",
|
205 |
+
" li.appendChild(percent);\n",
|
206 |
+
"\n",
|
207 |
+
" outputElement.appendChild(li);\n",
|
208 |
+
"\n",
|
209 |
+
" const fileDataPromise = new Promise((resolve) => {\n",
|
210 |
+
" const reader = new FileReader();\n",
|
211 |
+
" reader.onload = (e) => {\n",
|
212 |
+
" resolve(e.target.result);\n",
|
213 |
+
" };\n",
|
214 |
+
" reader.readAsArrayBuffer(file);\n",
|
215 |
+
" });\n",
|
216 |
+
" // Wait for the data to be ready.\n",
|
217 |
+
" let fileData = yield {\n",
|
218 |
+
" promise: fileDataPromise,\n",
|
219 |
+
" response: {\n",
|
220 |
+
" action: 'continue',\n",
|
221 |
+
" }\n",
|
222 |
+
" };\n",
|
223 |
+
"\n",
|
224 |
+
" // Use a chunked sending to avoid message size limits. See b/62115660.\n",
|
225 |
+
" let position = 0;\n",
|
226 |
+
" do {\n",
|
227 |
+
" const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
|
228 |
+
" const chunk = new Uint8Array(fileData, position, length);\n",
|
229 |
+
" position += length;\n",
|
230 |
+
"\n",
|
231 |
+
" const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
|
232 |
+
" yield {\n",
|
233 |
+
" response: {\n",
|
234 |
+
" action: 'append',\n",
|
235 |
+
" file: file.name,\n",
|
236 |
+
" data: base64,\n",
|
237 |
+
" },\n",
|
238 |
+
" };\n",
|
239 |
+
"\n",
|
240 |
+
" let percentDone = fileData.byteLength === 0 ?\n",
|
241 |
+
" 100 :\n",
|
242 |
+
" Math.round((position / fileData.byteLength) * 100);\n",
|
243 |
+
" percent.textContent = `${percentDone}% done`;\n",
|
244 |
+
"\n",
|
245 |
+
" } while (position < fileData.byteLength);\n",
|
246 |
+
" }\n",
|
247 |
+
"\n",
|
248 |
+
" // All done.\n",
|
249 |
+
" yield {\n",
|
250 |
+
" response: {\n",
|
251 |
+
" action: 'complete',\n",
|
252 |
+
" }\n",
|
253 |
+
" };\n",
|
254 |
+
"}\n",
|
255 |
+
"\n",
|
256 |
+
"scope.google = scope.google || {};\n",
|
257 |
+
"scope.google.colab = scope.google.colab || {};\n",
|
258 |
+
"scope.google.colab._files = {\n",
|
259 |
+
" _uploadFiles,\n",
|
260 |
+
" _uploadFilesContinue,\n",
|
261 |
+
"};\n",
|
262 |
+
"})(self);\n",
|
263 |
+
"</script> "
|
264 |
+
]
|
265 |
+
},
|
266 |
+
"metadata": {}
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"output_type": "stream",
|
270 |
+
"name": "stdout",
|
271 |
+
"text": [
|
272 |
+
"Saving chest_xray_weights.h5 to chest_xray_weights.h5\n"
|
273 |
+
]
|
274 |
+
}
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"source": [
|
280 |
+
"!ls"
|
281 |
+
],
|
282 |
+
"metadata": {
|
283 |
+
"colab": {
|
284 |
+
"base_uri": "https://localhost:8080/"
|
285 |
+
},
|
286 |
+
"id": "X7itk4Fdu1pA",
|
287 |
+
"outputId": "a8772aa3-e115-4dfe-c97f-241b2ec8d148"
|
288 |
+
},
|
289 |
+
"execution_count": null,
|
290 |
+
"outputs": [
|
291 |
+
{
|
292 |
+
"output_type": "stream",
|
293 |
+
"name": "stdout",
|
294 |
+
"text": [
|
295 |
+
"chest_xray_weights.h5 requirements.txt sample_data\n"
|
296 |
+
]
|
297 |
+
}
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "code",
|
302 |
+
"source": [
|
303 |
+
"%%writefile app.py\n",
|
304 |
+
"import gradio as gr\n",
|
305 |
+
"import tensorflow as tf\n",
|
306 |
+
"from tensorflow.keras.models import load_model\n",
|
307 |
+
"import numpy as np\n",
|
308 |
+
"from PIL import Image\n",
|
309 |
+
"import cv2\n",
|
310 |
+
"from tensorflow.keras.initializers import GlorotUniform\n",
|
311 |
+
"from tensorflow.keras.utils import custom_object_scope\n",
|
312 |
+
"\n",
|
313 |
+
"# Load your trained model (upload your .h5 file to this directory or specify the path)\n",
|
314 |
+
"# Use a custom object scope to handle potential compatibility issues with GlorotUniform\n",
|
315 |
+
"with custom_object_scope({'GlorotUniform': GlorotUniform}):\n",
|
316 |
+
" model = load_model('chest_xray_weights.h5') # Replace with your actual filename\n",
|
317 |
+
"\n",
|
318 |
+
"\n",
|
319 |
+
"# Define your model's classes (update based on your training labels)\n",
|
320 |
+
"anatomy_classes = [\n",
|
321 |
+
" \"No Finding\",\n",
|
322 |
+
" \"Atelectasis\",\n",
|
323 |
+
" \"Cardiomegaly\",\n",
|
324 |
+
" \"Consolidation\",\n",
|
325 |
+
" \"Edema\",\n",
|
326 |
+
" \"Effusion\",\n",
|
327 |
+
" \"Emphysema\",\n",
|
328 |
+
" \"Fibrosis\",\n",
|
329 |
+
" \"Hernia\",\n",
|
330 |
+
" \"Infiltration\",\n",
|
331 |
+
" \"Mass\",\n",
|
332 |
+
" \"Nodule\",\n",
|
333 |
+
" \"Pneumonia\",\n",
|
334 |
+
" \"Pneumothorax\"\n",
|
335 |
+
"]\n",
|
336 |
+
"\n",
|
337 |
+
"def predict_abnormality(image):\n",
|
338 |
+
" try:\n",
|
339 |
+
" # Preprocess the image (match your training setup)\n",
|
340 |
+
" img = Image.fromarray(image).resize((224, 224)) # Adjust size to your model's input\n",
|
341 |
+
" img_array = np.array(img)\n",
|
342 |
+
"\n",
|
343 |
+
" # Convert to grayscale if your model expects it\n",
|
344 |
+
" if len(img_array.shape) == 3:\n",
|
345 |
+
" img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)\n",
|
346 |
+
"\n",
|
347 |
+
" img_array = img_array / 255.0 # Normalize\n",
|
348 |
+
" img_array = np.expand_dims(img_array, axis=0) # Add batch dimension\n",
|
349 |
+
" img_array = np.expand_dims(img_array, axis=-1) # Add channel if needed\n",
|
350 |
+
"\n",
|
351 |
+
" # Run prediction\n",
|
352 |
+
" predictions = model.predict(img_array) # Removed [0] to inspect full output first\n",
|
353 |
+
" predicted_index = np.argmax(predictions[0]) # Access the first prediction output\n",
|
354 |
+
" confidence = predictions[0][predicted_index]\n",
|
355 |
+
"\n",
|
356 |
+
" # Format output\n",
|
357 |
+
" if predicted_index == 0: # Assuming index 0 is \"Normal\"\n",
|
358 |
+
" return f\"No abnormality detected. Confidence: {confidence:.2%}\"\n",
|
359 |
+
" else:\n",
|
360 |
+
" issue = anatomy_classes[predicted_index]\n",
|
361 |
+
" return f\"Detected issue: {issue}. Confidence: {confidence:.2%}. Please consult a doctor.\"\n",
|
362 |
+
"\n",
|
363 |
+
" except Exception as e:\n",
|
364 |
+
" print(f\"Error details: {e}\") # Print error details\n",
|
365 |
+
" # Added print statements to help diagnose the error\n",
|
366 |
+
" try:\n",
|
367 |
+
" print(f\"Shape of predictions: {predictions.shape}\")\n",
|
368 |
+
" print(f\"Predictions: {predictions}\")\n",
|
369 |
+
" print(f\"Predicted index: {predicted_index}\")\n",
|
370 |
+
" print(f\"Number of anatomy classes: {len(anatomy_classes)}\")\n",
|
371 |
+
"\n",
|
372 |
+
" except NameError:\n",
|
373 |
+
" print(\"Predictions or predicted_index not defined before error.\")\n",
|
374 |
+
"\n",
|
375 |
+
" return f\"Error: {str(e)}. Try another image.\"\n",
|
376 |
+
"\n",
|
377 |
+
"# Create the Gradio interface\n",
|
378 |
+
"demo = gr.Interface(\n",
|
379 |
+
" fn=predict_abnormality,\n",
|
380 |
+
" inputs=gr.Image(label=\"Upload Chest X-Ray Image\", type=\"numpy\"),\n",
|
381 |
+
" outputs=gr.Textbox(label=\"Analysis Result\"),\n",
|
382 |
+
" title=\"Chest X-Ray Abnormality Detector\",\n",
|
383 |
+
" description=\"Upload an X-ray image to detect potential issues. For educational use only—not a medical diagnosis.\",\n",
|
384 |
+
" examples=[[\"sample_xray.jpg\"]], # Add paths to example images if available\n",
|
385 |
+
" allow_flagging=\"never\"\n",
|
386 |
+
")\n",
|
387 |
+
"\n",
|
388 |
+
"if __name__ == \"__main__\":\n",
|
389 |
+
" demo.launch()\n"
|
390 |
+
],
|
391 |
+
"metadata": {
|
392 |
+
"id": "na8gwSs_5rPj"
|
393 |
+
},
|
394 |
+
"execution_count": null,
|
395 |
+
"outputs": []
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "code",
|
399 |
+
"source": [
|
400 |
+
"import gradio as gr\n",
|
401 |
+
"import tensorflow as tf\n",
|
402 |
+
"from tensorflow.keras.models import load_model\n",
|
403 |
+
"import numpy as np\n",
|
404 |
+
"from PIL import Image\n",
|
405 |
+
"import cv2\n",
|
406 |
+
"from tensorflow.keras.initializers import GlorotUniform\n",
|
407 |
+
"from tensorflow.keras.utils import custom_object_scope\n",
|
408 |
+
"\n",
|
409 |
+
"# Load your trained model (upload your .h5 file to this directory or specify the path)\n",
|
410 |
+
"# Use a custom object scope to handle potential compatibility issues with GlorotUniform\n",
|
411 |
+
"with custom_object_scope({'GlorotUniform': GlorotUniform}):\n",
|
412 |
+
" model = load_model('chest_xray_weights.h5') # Replace with your actual filename\n",
|
413 |
+
"\n",
|
414 |
+
"\n",
|
415 |
+
"# Define your model's classes (update based on your training labels)\n",
|
416 |
+
"anatomy_classes = [\n",
|
417 |
+
" \"No Finding\",\n",
|
418 |
+
" \"Atelectasis\",\n",
|
419 |
+
" \"Cardiomegaly\",\n",
|
420 |
+
" \"Consolidation\",\n",
|
421 |
+
" \"Edema\",\n",
|
422 |
+
" \"Effusion\",\n",
|
423 |
+
" \"Emphysema\",\n",
|
424 |
+
" \"Fibrosis\",\n",
|
425 |
+
" \"Hernia\",\n",
|
426 |
+
" \"Infiltration\",\n",
|
427 |
+
" \"Mass\",\n",
|
428 |
+
" \"Nodule\",\n",
|
429 |
+
" \"Pneumonia\",\n",
|
430 |
+
" \"Pneumothorax\"\n",
|
431 |
+
"]\n",
|
432 |
+
"\n",
|
433 |
+
"def predict_abnormality(image):\n",
|
434 |
+
" try:\n",
|
435 |
+
" # Preprocess the image (match your training setup)\n",
|
436 |
+
" img = Image.fromarray(image).resize((224, 224)) # Adjust size to your model's input\n",
|
437 |
+
" img_array = np.array(img)\n",
|
438 |
+
"\n",
|
439 |
+
" # Convert to grayscale if your model expects it\n",
|
440 |
+
" if len(img_array.shape) == 3:\n",
|
441 |
+
" img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)\n",
|
442 |
+
"\n",
|
443 |
+
" img_array = img_array / 255.0 # Normalize\n",
|
444 |
+
" img_array = np.expand_dims(img_array, axis=0) # Add batch dimension\n",
|
445 |
+
" img_array = np.expand_dims(img_array, axis=-1) # Add channel if needed\n",
|
446 |
+
"\n",
|
447 |
+
" # Run prediction\n",
|
448 |
+
" predictions = model.predict(img_array) # Removed [0] to inspect full output first\n",
|
449 |
+
" predicted_index = np.argmax(predictions[0]) # Access the first prediction output\n",
|
450 |
+
" confidence = predictions[0][predicted_index]\n",
|
451 |
+
"\n",
|
452 |
+
" # Format output\n",
|
453 |
+
" if predicted_index == 0: # Assuming index 0 is \"Normal\"\n",
|
454 |
+
" return f\"No abnormality detected. Confidence: {confidence:.2%}\"\n",
|
455 |
+
" else:\n",
|
456 |
+
" issue = anatomy_classes[predicted_index]\n",
|
457 |
+
" return f\"Detected issue: {issue}. Confidence: {confidence:.2%}. Please consult a doctor.\"\n",
|
458 |
+
"\n",
|
459 |
+
" except Exception as e:\n",
|
460 |
+
" print(f\"Error details: {e}\") # Print error details\n",
|
461 |
+
" # Added print statements to help diagnose the error\n",
|
462 |
+
" try:\n",
|
463 |
+
" print(f\"Shape of predictions: {predictions.shape}\")\n",
|
464 |
+
" print(f\"Predictions: {predictions}\")\n",
|
465 |
+
" print(f\"Predicted index: {predicted_index}\")\n",
|
466 |
+
" print(f\"Number of anatomy classes: {len(anatomy_classes)}\")\n",
|
467 |
+
"\n",
|
468 |
+
" except NameError:\n",
|
469 |
+
" print(\"Predictions or predicted_index not defined before error.\")\n",
|
470 |
+
"\n",
|
471 |
+
" return f\"Error: {str(e)}. Try another image.\"\n",
|
472 |
+
"\n",
|
473 |
+
"# Create the Gradio interface\n",
|
474 |
+
"demo = gr.Interface(\n",
|
475 |
+
" fn=predict_abnormality,\n",
|
476 |
+
" inputs=gr.Image(label=\"Upload Chest X-Ray Image\", type=\"numpy\"),\n",
|
477 |
+
" outputs=gr.Textbox(label=\"Analysis Result\"),\n",
|
478 |
+
" title=\"Chest X-Ray Abnormality Detector\",\n",
|
479 |
+
" description=\"Upload an X-ray image to detect potential issues. For educational use only—not a medical diagnosis.\",\n",
|
480 |
+
" examples=[[\"sample_xray.jpg\"]], # Add paths to example images if available\n",
|
481 |
+
" allow_flagging=\"never\"\n",
|
482 |
+
")\n",
|
483 |
+
"\n",
|
484 |
+
"if __name__ == \"__main__\":\n",
|
485 |
+
" demo.launch()"
|
486 |
+
],
|
487 |
+
"metadata": {
|
488 |
+
"colab": {
|
489 |
+
"base_uri": "https://localhost:8080/",
|
490 |
+
"height": 685
|
491 |
+
},
|
492 |
+
"id": "ABo9ZTOIROmK",
|
493 |
+
"outputId": "db3f3be7-9332-46b9-8de9-fa8d76d8c407"
|
494 |
+
},
|
495 |
+
"execution_count": null,
|
496 |
+
"outputs": [
|
497 |
+
{
|
498 |
+
"output_type": "stream",
|
499 |
+
"name": "stderr",
|
500 |
+
"text": [
|
501 |
+
"/usr/local/lib/python3.11/dist-packages/gradio/interface.py:416: UserWarning: The `allow_flagging` parameter in `Interface` is deprecated.Use `flagging_mode` instead.\n",
|
502 |
+
" warnings.warn(\n"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"output_type": "stream",
|
507 |
+
"name": "stdout",
|
508 |
+
"text": [
|
509 |
+
"It looks like you are running Gradio on a hosted a Jupyter notebook. For the Gradio app to work, sharing must be enabled. Automatically setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
510 |
+
"\n",
|
511 |
+
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
|
512 |
+
"* Running on public URL: https://0b58124b323893b4d0.gradio.live\n",
|
513 |
+
"\n",
|
514 |
+
"This share link expires in 1 week. For free permanent hosting and GPU upgrades, run `gradio deploy` from the terminal in the working directory to deploy to Hugging Face Spaces (https://huggingface.co/spaces)\n"
|
515 |
+
]
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"output_type": "display_data",
|
519 |
+
"data": {
|
520 |
+
"text/plain": [
|
521 |
+
"<IPython.core.display.HTML object>"
|
522 |
+
],
|
523 |
+
"text/html": [
|
524 |
+
"<div><iframe src=\"https://0b58124b323893b4d0.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
525 |
+
]
|
526 |
+
},
|
527 |
+
"metadata": {}
|
528 |
+
}
|
529 |
+
]
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"cell_type": "code",
|
533 |
+
"source": [
|
534 |
+
"from google.colab import drive\n",
|
535 |
+
"drive.mount('/content/drive')"
|
536 |
+
],
|
537 |
+
"metadata": {
|
538 |
+
"id": "0mtpdQN3w9wr"
|
539 |
+
},
|
540 |
+
"execution_count": null,
|
541 |
+
"outputs": []
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"cell_type": "code",
|
545 |
+
"source": [
|
546 |
+
"!gradio deploy"
|
547 |
+
],
|
548 |
+
"metadata": {
|
549 |
+
"colab": {
|
550 |
+
"base_uri": "https://localhost:8080/"
|
551 |
+
},
|
552 |
+
"id": "Eo8HYkzt3vET",
|
553 |
+
"outputId": "428c29ab-d2dc-4ecb-b4a3-6b96d4da4532"
|
554 |
+
},
|
555 |
+
"execution_count": null,
|
556 |
+
"outputs": [
|
557 |
+
{
|
558 |
+
"metadata": {
|
559 |
+
"tags": null
|
560 |
+
},
|
561 |
+
"name": "stdout",
|
562 |
+
"output_type": "stream",
|
563 |
+
"text": [
|
564 |
+
"Creating new Spaces Repo in \u001b[32m'/content'\u001b[0m. Collecting metadata, press Enter to \n",
|
565 |
+
"accept default value.\n",
|
566 |
+
"Enter Spaces app title [content]: "
|
567 |
+
]
|
568 |
+
}
|
569 |
+
]
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"cell_type": "code",
|
573 |
+
"source": [
|
574 |
+
"!pip install h5py tensorflow\n"
|
575 |
+
],
|
576 |
+
"metadata": {
|
577 |
+
"id": "GmlxHeAXTP-a"
|
578 |
+
},
|
579 |
+
"execution_count": null,
|
580 |
+
"outputs": []
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"cell_type": "code",
|
584 |
+
"source": [
|
585 |
+
"# Script: Upload and Handle .h5 File in Colab\n",
|
586 |
+
"\n",
|
587 |
+
"# Step 1: Import necessary libraries\n",
|
588 |
+
"from google.colab import files\n",
|
589 |
+
"from tensorflow.keras.models import load_model\n",
|
590 |
+
"import h5py\n",
|
591 |
+
"import os\n",
|
592 |
+
"\n",
|
593 |
+
"# Step 2: Upload the .h5 file\n",
|
594 |
+
"print(\"Please upload your .h5 file:\")\n",
|
595 |
+
"uploaded = files.upload()\n",
|
596 |
+
"\n",
|
597 |
+
"# Step 3: Get the uploaded filename (assumes single file upload)\n",
|
598 |
+
"filename = list(uploaded.keys())[0] # e.g., 'chest_xray_model.h5'\n",
|
599 |
+
"print(f\"Uploaded file: {filename}\")\n",
|
600 |
+
"\n",
|
601 |
+
"# Step 4: Verify file existence and size\n",
|
602 |
+
"if os.path.exists(filename):\n",
|
603 |
+
" file_size = os.path.getsize(filename) / (1024 * 1024) # Size in MB\n",
|
604 |
+
" print(f\"File size: {file_size:.2f} MB\")\n",
|
605 |
+
"else:\n",
|
606 |
+
" print(\"Upload failed. Please try again.\")\n",
|
607 |
+
" raise SystemExit\n",
|
608 |
+
"\n",
|
609 |
+
"# Step 5: Handle as HDF5 file (general inspection)\n",
|
610 |
+
"with h5py.File(filename, 'r') as f:\n",
|
611 |
+
" print(\"HDF5 keys:\", list(f.keys()))\n",
|
612 |
+
"\n",
|
613 |
+
"# Step 6: Load as Keras model (if it's a model file)\n",
|
614 |
+
"try:\n",
|
615 |
+
" model = load_model(filename)\n",
|
616 |
+
" print(\"Model loaded successfully!\")\n",
|
617 |
+
" model.summary() # Print model architecture\n",
|
618 |
+
"except Exception as e:\n",
|
619 |
+
" print(f\"Error loading as Keras model: {e}\")\n",
|
620 |
+
"\n",
|
621 |
+
"# Optional: Save or process further\n",
|
622 |
+
"# model.save('processed_model.h5') # Example: Resave if modified\n"
|
623 |
+
],
|
624 |
+
"metadata": {
|
625 |
+
"colab": {
|
626 |
+
"base_uri": "https://localhost:8080/",
|
627 |
+
"height": 56
|
628 |
+
},
|
629 |
+
"id": "__-Yt8VdTT8b",
|
630 |
+
"outputId": "251ea0b2-627f-4e15-e4b7-9859ee027e25"
|
631 |
+
},
|
632 |
+
"execution_count": null,
|
633 |
+
"outputs": [
|
634 |
+
{
|
635 |
+
"metadata": {
|
636 |
+
"tags": null
|
637 |
+
},
|
638 |
+
"name": "stdout",
|
639 |
+
"output_type": "stream",
|
640 |
+
"text": [
|
641 |
+
"Please upload your .h5 file:\n"
|
642 |
+
]
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"data": {
|
646 |
+
"text/html": [
|
647 |
+
"\n",
|
648 |
+
" <input type=\"file\" id=\"files-58b75fb6-d2ef-4c0f-9173-8ba3c9d66e40\" name=\"files[]\" multiple disabled\n",
|
649 |
+
" style=\"border:none\" />\n",
|
650 |
+
" <output id=\"result-58b75fb6-d2ef-4c0f-9173-8ba3c9d66e40\">\n",
|
651 |
+
" Upload widget is only available when the cell has been executed in the\n",
|
652 |
+
" current browser session. Please rerun this cell to enable.\n",
|
653 |
+
" </output>\n",
|
654 |
+
" <script>// Copyright 2017 Google LLC\n",
|
655 |
+
"//\n",
|
656 |
+
"// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
657 |
+
"// you may not use this file except in compliance with the License.\n",
|
658 |
+
"// You may obtain a copy of the License at\n",
|
659 |
+
"//\n",
|
660 |
+
"// http://www.apache.org/licenses/LICENSE-2.0\n",
|
661 |
+
"//\n",
|
662 |
+
"// Unless required by applicable law or agreed to in writing, software\n",
|
663 |
+
"// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
664 |
+
"// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
665 |
+
"// See the License for the specific language governing permissions and\n",
|
666 |
+
"// limitations under the License.\n",
|
667 |
+
"\n",
|
668 |
+
"/**\n",
|
669 |
+
" * @fileoverview Helpers for google.colab Python module.\n",
|
670 |
+
" */\n",
|
671 |
+
"(function(scope) {\n",
|
672 |
+
"function span(text, styleAttributes = {}) {\n",
|
673 |
+
" const element = document.createElement('span');\n",
|
674 |
+
" element.textContent = text;\n",
|
675 |
+
" for (const key of Object.keys(styleAttributes)) {\n",
|
676 |
+
" element.style[key] = styleAttributes[key];\n",
|
677 |
+
" }\n",
|
678 |
+
" return element;\n",
|
679 |
+
"}\n",
|
680 |
+
"\n",
|
681 |
+
"// Max number of bytes which will be uploaded at a time.\n",
|
682 |
+
"const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
|
683 |
+
"\n",
|
684 |
+
"function _uploadFiles(inputId, outputId) {\n",
|
685 |
+
" const steps = uploadFilesStep(inputId, outputId);\n",
|
686 |
+
" const outputElement = document.getElementById(outputId);\n",
|
687 |
+
" // Cache steps on the outputElement to make it available for the next call\n",
|
688 |
+
" // to uploadFilesContinue from Python.\n",
|
689 |
+
" outputElement.steps = steps;\n",
|
690 |
+
"\n",
|
691 |
+
" return _uploadFilesContinue(outputId);\n",
|
692 |
+
"}\n",
|
693 |
+
"\n",
|
694 |
+
"// This is roughly an async generator (not supported in the browser yet),\n",
|
695 |
+
"// where there are multiple asynchronous steps and the Python side is going\n",
|
696 |
+
"// to poll for completion of each step.\n",
|
697 |
+
"// This uses a Promise to block the python side on completion of each step,\n",
|
698 |
+
"// then passes the result of the previous step as the input to the next step.\n",
|
699 |
+
"function _uploadFilesContinue(outputId) {\n",
|
700 |
+
" const outputElement = document.getElementById(outputId);\n",
|
701 |
+
" const steps = outputElement.steps;\n",
|
702 |
+
"\n",
|
703 |
+
" const next = steps.next(outputElement.lastPromiseValue);\n",
|
704 |
+
" return Promise.resolve(next.value.promise).then((value) => {\n",
|
705 |
+
" // Cache the last promise value to make it available to the next\n",
|
706 |
+
" // step of the generator.\n",
|
707 |
+
" outputElement.lastPromiseValue = value;\n",
|
708 |
+
" return next.value.response;\n",
|
709 |
+
" });\n",
|
710 |
+
"}\n",
|
711 |
+
"\n",
|
712 |
+
"/**\n",
|
713 |
+
" * Generator function which is called between each async step of the upload\n",
|
714 |
+
" * process.\n",
|
715 |
+
" * @param {string} inputId Element ID of the input file picker element.\n",
|
716 |
+
" * @param {string} outputId Element ID of the output display.\n",
|
717 |
+
" * @return {!Iterable<!Object>} Iterable of next steps.\n",
|
718 |
+
" */\n",
|
719 |
+
"function* uploadFilesStep(inputId, outputId) {\n",
|
720 |
+
" const inputElement = document.getElementById(inputId);\n",
|
721 |
+
" inputElement.disabled = false;\n",
|
722 |
+
"\n",
|
723 |
+
" const outputElement = document.getElementById(outputId);\n",
|
724 |
+
" outputElement.innerHTML = '';\n",
|
725 |
+
"\n",
|
726 |
+
" const pickedPromise = new Promise((resolve) => {\n",
|
727 |
+
" inputElement.addEventListener('change', (e) => {\n",
|
728 |
+
" resolve(e.target.files);\n",
|
729 |
+
" });\n",
|
730 |
+
" });\n",
|
731 |
+
"\n",
|
732 |
+
" const cancel = document.createElement('button');\n",
|
733 |
+
" inputElement.parentElement.appendChild(cancel);\n",
|
734 |
+
" cancel.textContent = 'Cancel upload';\n",
|
735 |
+
" const cancelPromise = new Promise((resolve) => {\n",
|
736 |
+
" cancel.onclick = () => {\n",
|
737 |
+
" resolve(null);\n",
|
738 |
+
" };\n",
|
739 |
+
" });\n",
|
740 |
+
"\n",
|
741 |
+
" // Wait for the user to pick the files.\n",
|
742 |
+
" const files = yield {\n",
|
743 |
+
" promise: Promise.race([pickedPromise, cancelPromise]),\n",
|
744 |
+
" response: {\n",
|
745 |
+
" action: 'starting',\n",
|
746 |
+
" }\n",
|
747 |
+
" };\n",
|
748 |
+
"\n",
|
749 |
+
" cancel.remove();\n",
|
750 |
+
"\n",
|
751 |
+
" // Disable the input element since further picks are not allowed.\n",
|
752 |
+
" inputElement.disabled = true;\n",
|
753 |
+
"\n",
|
754 |
+
" if (!files) {\n",
|
755 |
+
" return {\n",
|
756 |
+
" response: {\n",
|
757 |
+
" action: 'complete',\n",
|
758 |
+
" }\n",
|
759 |
+
" };\n",
|
760 |
+
" }\n",
|
761 |
+
"\n",
|
762 |
+
" for (const file of files) {\n",
|
763 |
+
" const li = document.createElement('li');\n",
|
764 |
+
" li.append(span(file.name, {fontWeight: 'bold'}));\n",
|
765 |
+
" li.append(span(\n",
|
766 |
+
" `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
|
767 |
+
" `last modified: ${\n",
|
768 |
+
" file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
|
769 |
+
" 'n/a'} - `));\n",
|
770 |
+
" const percent = span('0% done');\n",
|
771 |
+
" li.appendChild(percent);\n",
|
772 |
+
"\n",
|
773 |
+
" outputElement.appendChild(li);\n",
|
774 |
+
"\n",
|
775 |
+
" const fileDataPromise = new Promise((resolve) => {\n",
|
776 |
+
" const reader = new FileReader();\n",
|
777 |
+
" reader.onload = (e) => {\n",
|
778 |
+
" resolve(e.target.result);\n",
|
779 |
+
" };\n",
|
780 |
+
" reader.readAsArrayBuffer(file);\n",
|
781 |
+
" });\n",
|
782 |
+
" // Wait for the data to be ready.\n",
|
783 |
+
" let fileData = yield {\n",
|
784 |
+
" promise: fileDataPromise,\n",
|
785 |
+
" response: {\n",
|
786 |
+
" action: 'continue',\n",
|
787 |
+
" }\n",
|
788 |
+
" };\n",
|
789 |
+
"\n",
|
790 |
+
" // Use a chunked sending to avoid message size limits. See b/62115660.\n",
|
791 |
+
" let position = 0;\n",
|
792 |
+
" do {\n",
|
793 |
+
" const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
|
794 |
+
" const chunk = new Uint8Array(fileData, position, length);\n",
|
795 |
+
" position += length;\n",
|
796 |
+
"\n",
|
797 |
+
" const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
|
798 |
+
" yield {\n",
|
799 |
+
" response: {\n",
|
800 |
+
" action: 'append',\n",
|
801 |
+
" file: file.name,\n",
|
802 |
+
" data: base64,\n",
|
803 |
+
" },\n",
|
804 |
+
" };\n",
|
805 |
+
"\n",
|
806 |
+
" let percentDone = fileData.byteLength === 0 ?\n",
|
807 |
+
" 100 :\n",
|
808 |
+
" Math.round((position / fileData.byteLength) * 100);\n",
|
809 |
+
" percent.textContent = `${percentDone}% done`;\n",
|
810 |
+
"\n",
|
811 |
+
" } while (position < fileData.byteLength);\n",
|
812 |
+
" }\n",
|
813 |
+
"\n",
|
814 |
+
" // All done.\n",
|
815 |
+
" yield {\n",
|
816 |
+
" response: {\n",
|
817 |
+
" action: 'complete',\n",
|
818 |
+
" }\n",
|
819 |
+
" };\n",
|
820 |
+
"}\n",
|
821 |
+
"\n",
|
822 |
+
"scope.google = scope.google || {};\n",
|
823 |
+
"scope.google.colab = scope.google.colab || {};\n",
|
824 |
+
"scope.google.colab._files = {\n",
|
825 |
+
" _uploadFiles,\n",
|
826 |
+
" _uploadFilesContinue,\n",
|
827 |
+
"};\n",
|
828 |
+
"})(self);\n",
|
829 |
+
"</script> "
|
830 |
+
],
|
831 |
+
"text/plain": [
|
832 |
+
"<IPython.core.display.HTML object>"
|
833 |
+
]
|
834 |
+
},
|
835 |
+
"metadata": {},
|
836 |
+
"output_type": "display_data"
|
837 |
+
}
|
838 |
+
]
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"cell_type": "code",
|
842 |
+
"metadata": {
|
843 |
+
"colab": {
|
844 |
+
"base_uri": "https://localhost:8080/"
|
845 |
+
},
|
846 |
+
"id": "f6c9da65",
|
847 |
+
"outputId": "4ffa4d8e-5717-4864-8791-427eb6c0d2cd"
|
848 |
+
},
|
849 |
+
"source": [
|
850 |
+
"# Uninstall current TensorFlow version\n",
|
851 |
+
"!pip uninstall tensorflow -y\n",
|
852 |
+
"\n",
|
853 |
+
"# Install TensorFlow 2.8\n",
|
854 |
+
"!pip install tensorflow==2.8\n",
|
855 |
+
"\n",
|
856 |
+
"# After running this cell, restart the Colab runtime (Runtime -> Restart runtime)\n",
|
857 |
+
"# Then, re-run the cell containing your model loading and Gradio interface code (cell ID ABo9ZTOIROmK)"
|
858 |
+
],
|
859 |
+
"execution_count": null,
|
860 |
+
"outputs": [
|
861 |
+
{
|
862 |
+
"output_type": "stream",
|
863 |
+
"name": "stdout",
|
864 |
+
"text": [
|
865 |
+
"Found existing installation: tensorflow 2.18.0\n",
|
866 |
+
"Uninstalling tensorflow-2.18.0:\n",
|
867 |
+
" Successfully uninstalled tensorflow-2.18.0\n",
|
868 |
+
"\u001b[31mERROR: Could not find a version that satisfies the requirement tensorflow==2.8 (from versions: 2.12.0rc0, 2.12.0rc1, 2.12.0, 2.12.1, 2.13.0rc0, 2.13.0rc1, 2.13.0rc2, 2.13.0, 2.13.1, 2.14.0rc0, 2.14.0rc1, 2.14.0, 2.14.1, 2.15.0rc0, 2.15.0rc1, 2.15.0, 2.15.0.post1, 2.15.1, 2.16.0rc0, 2.16.1, 2.16.2, 2.17.0rc0, 2.17.0rc1, 2.17.0, 2.17.1, 2.18.0rc0, 2.18.0rc1, 2.18.0rc2, 2.18.0, 2.18.1, 2.19.0rc0, 2.19.0)\u001b[0m\u001b[31m\n",
|
869 |
+
"\u001b[0m\u001b[31mERROR: No matching distribution found for tensorflow==2.8\u001b[0m\u001b[31m\n",
|
870 |
+
"\u001b[0m"
|
871 |
+
]
|
872 |
+
}
|
873 |
+
]
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"cell_type": "code",
|
877 |
+
"source": [
|
878 |
+
"model.summary()"
|
879 |
+
],
|
880 |
+
"metadata": {
|
881 |
+
"colab": {
|
882 |
+
"base_uri": "https://localhost:8080/"
|
883 |
+
},
|
884 |
+
"id": "De7ShZSR0RBq",
|
885 |
+
"outputId": "f9e2c149-3007-4851-b330-b886238fcc40"
|
886 |
+
},
|
887 |
+
"execution_count": null,
|
888 |
+
"outputs": [
|
889 |
+
{
|
890 |
+
"output_type": "stream",
|
891 |
+
"name": "stdout",
|
892 |
+
"text": [
|
893 |
+
"Model: \"sequential\"\n",
|
894 |
+
"_________________________________________________________________\n",
|
895 |
+
" Layer (type) Output Shape Param # \n",
|
896 |
+
"=================================================================\n",
|
897 |
+
" conv2d (Conv2D) (None, 222, 222, 32) 320 \n",
|
898 |
+
" \n",
|
899 |
+
" max_pooling2d (MaxPooling2D (None, 111, 111, 32) 0 \n",
|
900 |
+
" ) \n",
|
901 |
+
" \n",
|
902 |
+
" conv2d_1 (Conv2D) (None, 109, 109, 64) 18496 \n",
|
903 |
+
" \n",
|
904 |
+
" max_pooling2d_1 (MaxPooling (None, 54, 54, 64) 0 \n",
|
905 |
+
" 2D) \n",
|
906 |
+
" \n",
|
907 |
+
" conv2d_2 (Conv2D) (None, 52, 52, 128) 73856 \n",
|
908 |
+
" \n",
|
909 |
+
" max_pooling2d_2 (MaxPooling (None, 26, 26, 128) 0 \n",
|
910 |
+
" 2D) \n",
|
911 |
+
" \n",
|
912 |
+
" flatten (Flatten) (None, 86528) 0 \n",
|
913 |
+
" \n",
|
914 |
+
" dense (Dense) (None, 128) 11075712 \n",
|
915 |
+
" \n",
|
916 |
+
" dropout (Dropout) (None, 128) 0 \n",
|
917 |
+
" \n",
|
918 |
+
" dense_1 (Dense) (None, 14) 1806 \n",
|
919 |
+
" \n",
|
920 |
+
"=================================================================\n",
|
921 |
+
"Total params: 11,170,190\n",
|
922 |
+
"Trainable params: 11,170,190\n",
|
923 |
+
"Non-trainable params: 0\n",
|
924 |
+
"_________________________________________________________________\n"
|
925 |
+
]
|
926 |
+
}
|
927 |
+
]
|
928 |
+
}
|
929 |
+
]
|
930 |
+
}
|