Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,684 Bytes
8a58a6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import glob
import gradio as gr
import sys
import os
from PIL import Image
import numpy as np
import spaces
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
from modules.user.pipeline import pipeline
import torch
def load_generated_images():
"""Load generated images with given prefix from disk"""
image_files = glob.glob("./_internal/output/**/*.png")
# If there are no image files, return
if not image_files:
return []
# Sort files by modification time in descending order
image_files.sort(key=os.path.getmtime, reverse=True)
# Get most recent timestamp
latest_time = os.path.getmtime(image_files[0])
# Get all images from same batch (within 1 second of most recent)
batch_images = []
for file in image_files:
if abs(os.path.getmtime(file) - latest_time) < 1.0:
try:
img = Image.open(file)
batch_images.append(img)
except:
continue
if not batch_images:
return []
return batch_images
@spaces.GPU
def generate_images(
prompt: str,
width: int = 512,
height: int = 512,
num_images: int = 1,
batch_size: int = 1,
hires_fix: bool = False,
adetailer: bool = False,
enhance_prompt: bool = False,
img2img_enabled: bool = False,
img2img_image: str = None,
stable_fast: bool = False,
reuse_seed: bool = False,
flux_enabled: bool = False,
prio_speed: bool = False,
realistic_model: bool = False,
multiscale_enabled: bool = True,
multiscale_intermittent: bool = False,
multiscale_factor: float = 0.5,
multiscale_fullres_start: int = 3,
multiscale_fullres_end: int = 8,
keep_models_loaded: bool = True,
progress=gr.Progress(),
):
"""Generate images using the LightDiffusion pipeline"""
try:
# Set model persistence preference
from modules.Device.ModelCache import set_keep_models_loaded
set_keep_models_loaded(keep_models_loaded)
if img2img_enabled and img2img_image is not None:
# Convert numpy array to PIL Image
if isinstance(img2img_image, np.ndarray):
img_pil = Image.fromarray(img2img_image)
img_pil.save("temp_img2img.png")
prompt = "temp_img2img.png"
# Run pipeline and capture saved images
with torch.inference_mode():
pipeline(
prompt=prompt,
w=width,
h=height,
number=num_images,
batch=batch_size,
hires_fix=hires_fix,
adetailer=adetailer,
enhance_prompt=enhance_prompt,
img2img=img2img_enabled,
stable_fast=stable_fast,
reuse_seed=reuse_seed,
flux_enabled=flux_enabled,
prio_speed=prio_speed,
autohdr=True,
realistic_model=realistic_model,
enable_multiscale=multiscale_enabled,
multiscale_intermittent_fullres=multiscale_intermittent,
multiscale_factor=multiscale_factor,
multiscale_fullres_start=multiscale_fullres_start,
multiscale_fullres_end=multiscale_fullres_end,
)
# Clean up temporary file if it exists
if os.path.exists("temp_img2img.png"):
os.remove("temp_img2img.png")
return load_generated_images()
except Exception:
import traceback
print(traceback.format_exc())
# Clean up temporary file if it exists
if os.path.exists("temp_img2img.png"):
os.remove("temp_img2img.png")
return [Image.new("RGB", (512, 512), color="black")]
def get_vram_info():
"""Get VRAM usage information"""
try:
from modules.Device.ModelCache import get_memory_info
info = get_memory_info()
return f"""
**VRAM Usage:**
- Total: {info["total_vram"]:.1f} GB
- Used: {info["used_vram"]:.1f} GB
- Free: {info["free_vram"]:.1f} GB
- Keep Models Loaded: {info["keep_loaded"]}
- Has Cached Checkpoint: {info["has_cached_checkpoint"]}
"""
except Exception as e:
return f"Error getting VRAM info: {e}"
def clear_model_cache_ui():
"""Clear model cache from UI"""
try:
from modules.Device.ModelCache import clear_model_cache
clear_model_cache()
return "β
Model cache cleared successfully!"
except Exception as e:
return f"β Error clearing cache: {e}"
def apply_multiscale_preset(preset_name):
"""Apply multiscale preset values to the UI components"""
if preset_name == "None":
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
try:
from modules.sample.multiscale_presets import get_preset_parameters
params = get_preset_parameters(preset_name)
return (
gr.update(value=params["enable_multiscale"]),
gr.update(value=params["multiscale_factor"]),
gr.update(value=params["multiscale_fullres_start"]),
gr.update(value=params["multiscale_fullres_end"]),
gr.update(value=params["multiscale_intermittent_fullres"]),
)
except Exception as e:
print(f"Error applying preset {preset_name}: {e}")
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
# Create Gradio interface
with gr.Blocks(title="LightDiffusion Web UI") as demo:
gr.Markdown("# LightDiffusion Web UI")
gr.Markdown("Generate AI images using LightDiffusion")
gr.Markdown(
"This is the demo for LightDiffusion, the fastest diffusion backend for generating images. https://github.com/LightDiffusion/LightDiffusion-Next"
)
with gr.Row():
with gr.Column():
# Input components
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
with gr.Row():
width = gr.Slider(
minimum=64, maximum=2048, value=512, step=64, label="Width"
)
height = gr.Slider(
minimum=64, maximum=2048, value=512, step=64, label="Height"
)
with gr.Row():
num_images = gr.Slider(
minimum=1, maximum=10, value=1, step=1, label="Number of Images"
)
batch_size = gr.Slider(
minimum=1, maximum=4, value=1, step=1, label="Batch Size"
)
with gr.Row():
hires_fix = gr.Checkbox(label="HiRes Fix")
adetailer = gr.Checkbox(label="Auto Face/Body Enhancement")
enhance_prompt = gr.Checkbox(label="Enhance Prompt")
stable_fast = gr.Checkbox(label="Stable Fast Mode")
with gr.Row():
reuse_seed = gr.Checkbox(label="Reuse Seed")
flux_enabled = gr.Checkbox(label="Flux Mode")
prio_speed = gr.Checkbox(label="Prioritize Speed")
realistic_model = gr.Checkbox(label="Realistic Model")
with gr.Row():
multiscale_enabled = gr.Checkbox(
label="Multi-Scale Diffusion", value=True
)
img2img_enabled = gr.Checkbox(label="Image to Image Mode")
keep_models_loaded = gr.Checkbox(
label="Keep Models in VRAM",
value=True,
info="Keep models loaded for instant reuse (faster but uses more VRAM)",
)
img2img_image = gr.Image(label="Input Image for img2img", visible=False)
# Multi-scale preset selection
with gr.Row():
multiscale_preset = gr.Dropdown(
label="Multi-Scale Preset",
choices=["None", "quality", "performance", "balanced", "disabled"],
value="None",
info="Select a preset to automatically configure multi-scale settings",
)
multiscale_intermittent = gr.Checkbox(
label="Intermittent Full-Res",
value=False,
info="Enable intermittent full-resolution rendering in low-res region",
)
with gr.Row():
multiscale_factor = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.5,
step=0.1,
label="Multi-Scale Factor",
)
multiscale_fullres_start = gr.Slider(
minimum=0, maximum=10, value=3, step=1, label="Full-Res Start Steps"
)
multiscale_fullres_end = gr.Slider(
minimum=0, maximum=20, value=8, step=1, label="Full-Res End Steps"
)
# Make input image visible only when img2img is enabled
img2img_enabled.change(
fn=lambda x: gr.update(visible=x),
inputs=[img2img_enabled],
outputs=[img2img_image],
)
# Handle preset changes
multiscale_preset.change(
fn=apply_multiscale_preset,
inputs=[multiscale_preset],
outputs=[
multiscale_enabled,
multiscale_factor,
multiscale_fullres_start,
multiscale_fullres_end,
multiscale_intermittent,
],
)
generate_btn = gr.Button("Generate")
# Model Cache Management
with gr.Accordion("Model Cache Management", open=False):
with gr.Row():
vram_info_btn = gr.Button("π Check VRAM Usage")
clear_cache_btn = gr.Button("ποΈ Clear Model Cache")
vram_info_display = gr.Markdown("")
cache_status_display = gr.Markdown("")
# Output gallery
gallery = gr.Gallery(
label="Generated Images",
show_label=True,
elem_id="gallery",
columns=[2],
rows=[2],
object_fit="contain",
height="auto",
)
# Connect generate button to pipeline
generate_btn.click(
fn=generate_images,
inputs=[
prompt,
width,
height,
num_images,
batch_size,
hires_fix,
adetailer,
enhance_prompt,
img2img_enabled,
img2img_image,
stable_fast,
reuse_seed,
flux_enabled,
prio_speed,
realistic_model,
multiscale_enabled,
multiscale_intermittent,
multiscale_factor,
multiscale_fullres_start,
multiscale_fullres_end,
keep_models_loaded,
],
outputs=gallery,
)
# Connect VRAM info and cache management buttons
vram_info_btn.click(
fn=get_vram_info,
outputs=vram_info_display,
)
clear_cache_btn.click(
fn=clear_model_cache_ui,
outputs=cache_status_display,
)
def is_huggingface_space():
return "SPACE_ID" in os.environ
def is_docker_environment():
return "GRADIO_SERVER_PORT" in os.environ and "GRADIO_SERVER_NAME" in os.environ
# For local testing
if __name__ == "__main__":
if is_huggingface_space():
demo.launch(
debug=False,
server_name="0.0.0.0",
server_port=7860, # Standard HF Spaces port
)
elif is_docker_environment():
# Docker environment - use environment variables
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
server_port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
demo.launch(
debug=False,
server_name=server_name,
server_port=server_port,
)
else:
demo.launch(
server_name="0.0.0.0",
server_port=8000,
auth=None,
share=True, # Only enable sharing locally
debug=True,
)
|