File size: 12,684 Bytes
8a58a6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import glob
import gradio as gr
import sys
import os
from PIL import Image
import numpy as np
import spaces

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))

from modules.user.pipeline import pipeline
import torch


def load_generated_images():
    """Load generated images with given prefix from disk"""
    image_files = glob.glob("./_internal/output/**/*.png")

    # If there are no image files, return
    if not image_files:
        return []

    # Sort files by modification time in descending order
    image_files.sort(key=os.path.getmtime, reverse=True)

    # Get most recent timestamp
    latest_time = os.path.getmtime(image_files[0])

    # Get all images from same batch (within 1 second of most recent)
    batch_images = []
    for file in image_files:
        if abs(os.path.getmtime(file) - latest_time) < 1.0:
            try:
                img = Image.open(file)
                batch_images.append(img)
            except:
                continue

    if not batch_images:
        return []
    return batch_images


@spaces.GPU
def generate_images(

    prompt: str,

    width: int = 512,

    height: int = 512,

    num_images: int = 1,

    batch_size: int = 1,

    hires_fix: bool = False,

    adetailer: bool = False,

    enhance_prompt: bool = False,

    img2img_enabled: bool = False,

    img2img_image: str = None,

    stable_fast: bool = False,

    reuse_seed: bool = False,

    flux_enabled: bool = False,

    prio_speed: bool = False,

    realistic_model: bool = False,

    multiscale_enabled: bool = True,

    multiscale_intermittent: bool = False,

    multiscale_factor: float = 0.5,

    multiscale_fullres_start: int = 3,

    multiscale_fullres_end: int = 8,

    keep_models_loaded: bool = True,

    progress=gr.Progress(),

):
    """Generate images using the LightDiffusion pipeline"""
    try:
        # Set model persistence preference
        from modules.Device.ModelCache import set_keep_models_loaded

        set_keep_models_loaded(keep_models_loaded)

        if img2img_enabled and img2img_image is not None:
            # Convert numpy array to PIL Image
            if isinstance(img2img_image, np.ndarray):
                img_pil = Image.fromarray(img2img_image)
                img_pil.save("temp_img2img.png")
                prompt = "temp_img2img.png"

        # Run pipeline and capture saved images
        with torch.inference_mode():
            pipeline(
                prompt=prompt,
                w=width,
                h=height,
                number=num_images,
                batch=batch_size,
                hires_fix=hires_fix,
                adetailer=adetailer,
                enhance_prompt=enhance_prompt,
                img2img=img2img_enabled,
                stable_fast=stable_fast,
                reuse_seed=reuse_seed,
                flux_enabled=flux_enabled,
                prio_speed=prio_speed,
                autohdr=True,
                realistic_model=realistic_model,
                enable_multiscale=multiscale_enabled,
                multiscale_intermittent_fullres=multiscale_intermittent,
                multiscale_factor=multiscale_factor,
                multiscale_fullres_start=multiscale_fullres_start,
                multiscale_fullres_end=multiscale_fullres_end,
            )

        # Clean up temporary file if it exists
        if os.path.exists("temp_img2img.png"):
            os.remove("temp_img2img.png")

        return load_generated_images()

    except Exception:
        import traceback

        print(traceback.format_exc())
        # Clean up temporary file if it exists
        if os.path.exists("temp_img2img.png"):
            os.remove("temp_img2img.png")
        return [Image.new("RGB", (512, 512), color="black")]


def get_vram_info():
    """Get VRAM usage information"""
    try:
        from modules.Device.ModelCache import get_memory_info

        info = get_memory_info()
        return f"""

**VRAM Usage:**

- Total: {info["total_vram"]:.1f} GB

- Used: {info["used_vram"]:.1f} GB

- Free: {info["free_vram"]:.1f} GB

- Keep Models Loaded: {info["keep_loaded"]}

- Has Cached Checkpoint: {info["has_cached_checkpoint"]}

"""
    except Exception as e:
        return f"Error getting VRAM info: {e}"


def clear_model_cache_ui():
    """Clear model cache from UI"""
    try:
        from modules.Device.ModelCache import clear_model_cache

        clear_model_cache()
        return "βœ… Model cache cleared successfully!"
    except Exception as e:
        return f"❌ Error clearing cache: {e}"


def apply_multiscale_preset(preset_name):
    """Apply multiscale preset values to the UI components"""
    if preset_name == "None":
        return gr.update(), gr.update(), gr.update(), gr.update(), gr.update()

    try:
        from modules.sample.multiscale_presets import get_preset_parameters

        params = get_preset_parameters(preset_name)

        return (
            gr.update(value=params["enable_multiscale"]),
            gr.update(value=params["multiscale_factor"]),
            gr.update(value=params["multiscale_fullres_start"]),
            gr.update(value=params["multiscale_fullres_end"]),
            gr.update(value=params["multiscale_intermittent_fullres"]),
        )
    except Exception as e:
        print(f"Error applying preset {preset_name}: {e}")
        return gr.update(), gr.update(), gr.update(), gr.update(), gr.update()


# Create Gradio interface
with gr.Blocks(title="LightDiffusion Web UI") as demo:
    gr.Markdown("# LightDiffusion Web UI")
    gr.Markdown("Generate AI images using LightDiffusion")
    gr.Markdown(
        "This is the demo for LightDiffusion, the fastest diffusion backend for generating images. https://github.com/LightDiffusion/LightDiffusion-Next"
    )

    with gr.Row():
        with gr.Column():
            # Input components
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")

            with gr.Row():
                width = gr.Slider(
                    minimum=64, maximum=2048, value=512, step=64, label="Width"
                )
                height = gr.Slider(
                    minimum=64, maximum=2048, value=512, step=64, label="Height"
                )

            with gr.Row():
                num_images = gr.Slider(
                    minimum=1, maximum=10, value=1, step=1, label="Number of Images"
                )
                batch_size = gr.Slider(
                    minimum=1, maximum=4, value=1, step=1, label="Batch Size"
                )

            with gr.Row():
                hires_fix = gr.Checkbox(label="HiRes Fix")
                adetailer = gr.Checkbox(label="Auto Face/Body Enhancement")
                enhance_prompt = gr.Checkbox(label="Enhance Prompt")
                stable_fast = gr.Checkbox(label="Stable Fast Mode")

            with gr.Row():
                reuse_seed = gr.Checkbox(label="Reuse Seed")
                flux_enabled = gr.Checkbox(label="Flux Mode")
                prio_speed = gr.Checkbox(label="Prioritize Speed")
                realistic_model = gr.Checkbox(label="Realistic Model")

            with gr.Row():
                multiscale_enabled = gr.Checkbox(
                    label="Multi-Scale Diffusion", value=True
                )
                img2img_enabled = gr.Checkbox(label="Image to Image Mode")
                keep_models_loaded = gr.Checkbox(
                    label="Keep Models in VRAM",
                    value=True,
                    info="Keep models loaded for instant reuse (faster but uses more VRAM)",
                )

            img2img_image = gr.Image(label="Input Image for img2img", visible=False)

            # Multi-scale preset selection
            with gr.Row():
                multiscale_preset = gr.Dropdown(
                    label="Multi-Scale Preset",
                    choices=["None", "quality", "performance", "balanced", "disabled"],
                    value="None",
                    info="Select a preset to automatically configure multi-scale settings",
                )
                multiscale_intermittent = gr.Checkbox(
                    label="Intermittent Full-Res",
                    value=False,
                    info="Enable intermittent full-resolution rendering in low-res region",
                )

            with gr.Row():
                multiscale_factor = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.5,
                    step=0.1,
                    label="Multi-Scale Factor",
                )
                multiscale_fullres_start = gr.Slider(
                    minimum=0, maximum=10, value=3, step=1, label="Full-Res Start Steps"
                )
                multiscale_fullres_end = gr.Slider(
                    minimum=0, maximum=20, value=8, step=1, label="Full-Res End Steps"
                )

            # Make input image visible only when img2img is enabled
            img2img_enabled.change(
                fn=lambda x: gr.update(visible=x),
                inputs=[img2img_enabled],
                outputs=[img2img_image],
            )

            # Handle preset changes
            multiscale_preset.change(
                fn=apply_multiscale_preset,
                inputs=[multiscale_preset],
                outputs=[
                    multiscale_enabled,
                    multiscale_factor,
                    multiscale_fullres_start,
                    multiscale_fullres_end,
                    multiscale_intermittent,
                ],
            )

            generate_btn = gr.Button("Generate")

            # Model Cache Management
            with gr.Accordion("Model Cache Management", open=False):
                with gr.Row():
                    vram_info_btn = gr.Button("πŸ” Check VRAM Usage")
                    clear_cache_btn = gr.Button("πŸ—‘οΈ Clear Model Cache")
                vram_info_display = gr.Markdown("")
                cache_status_display = gr.Markdown("")

        # Output gallery
        gallery = gr.Gallery(
            label="Generated Images",
            show_label=True,
            elem_id="gallery",
            columns=[2],
            rows=[2],
            object_fit="contain",
            height="auto",
        )

    # Connect generate button to pipeline
    generate_btn.click(
        fn=generate_images,
        inputs=[
            prompt,
            width,
            height,
            num_images,
            batch_size,
            hires_fix,
            adetailer,
            enhance_prompt,
            img2img_enabled,
            img2img_image,
            stable_fast,
            reuse_seed,
            flux_enabled,
            prio_speed,
            realistic_model,
            multiscale_enabled,
            multiscale_intermittent,
            multiscale_factor,
            multiscale_fullres_start,
            multiscale_fullres_end,
            keep_models_loaded,
        ],
        outputs=gallery,
    )

    # Connect VRAM info and cache management buttons
    vram_info_btn.click(
        fn=get_vram_info,
        outputs=vram_info_display,
    )

    clear_cache_btn.click(
        fn=clear_model_cache_ui,
        outputs=cache_status_display,
    )


def is_huggingface_space():
    return "SPACE_ID" in os.environ


def is_docker_environment():
    return "GRADIO_SERVER_PORT" in os.environ and "GRADIO_SERVER_NAME" in os.environ


# For local testing
if __name__ == "__main__":
    if is_huggingface_space():
        demo.launch(
            debug=False,
            server_name="0.0.0.0",
            server_port=7860,  # Standard HF Spaces port
        )
    elif is_docker_environment():
        # Docker environment - use environment variables
        server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
        server_port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
        demo.launch(
            debug=False,
            server_name=server_name,
            server_port=server_port,
        )
    else:
        demo.launch(
            server_name="0.0.0.0",
            server_port=8000,
            auth=None,
            share=True,  # Only enable sharing locally
            debug=True,
        )