# Copyright (c) 2024-2025, Yisheng He, Yuan Dong # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import base64 import subprocess import gradio as gr import numpy as np from PIL import Image import argparse from omegaconf import OmegaConf import torch from lam.runners.infer.head_utils import prepare_motion_seqs, preprocess_image import moviepy.editor as mpy from lam.utils.ffmpeg_utils import images_to_video import sys from flame_tracking_single_image import FlameTrackingSingleImage try: import spaces except: pass def launch_pretrained(): from huggingface_hub import snapshot_download, hf_hub_download hf_hub_download(repo_id='DyrusQZ/LHM_Runtime', repo_type='model', filename='assets.tar', local_dir='./') os.system('tar -xvf assets.tar && rm assets.tar') hf_hub_download(repo_id='DyrusQZ/LHM_Runtime', repo_type='model', filename='LHM-0.5B.tar', local_dir='./') os.system('tar -xvf LHM-0.5B.tar && rm LHM-0.5B.tar') hf_hub_download(repo_id='DyrusQZ/LHM_Runtime', repo_type='model', filename='LHM_prior_model.tar', local_dir='./') os.system('tar -xvf LHM_prior_model.tar && rm LHM_prior_model.tar') def launch_env_not_compile_with_cuda(): os.system('pip install chumpy') os.system('pip uninstall -y basicsr') os.system('pip install git+https://github.com/hitsz-zuoqi/BasicSR/') os.system('pip install numpy==1.23.0') os.system( 'pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt251/download.html' ) def assert_input_image(input_image): if input_image is None: raise gr.Error('No image selected or uploaded!') def prepare_working_dir(): import tempfile working_dir = tempfile.TemporaryDirectory() return working_dir def init_preprocessor(): from lam.utils.preprocess import Preprocessor global preprocessor preprocessor = Preprocessor() def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir): image_raw = os.path.join(working_dir.name, 'raw.png') with Image.fromarray(image_in) as img: img.save(image_raw) image_out = os.path.join(working_dir.name, 'rembg.png') success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter) assert success, f'Failed under preprocess_fn!' return image_out def get_image_base64(path): with open(path, 'rb') as image_file: encoded_string = base64.b64encode(image_file.read()).decode() return f'data:image/png;base64,{encoded_string}' def save_imgs_2_video(imgs, v_pth, fps): img_lst = [imgs[i] for i in range(imgs.shape[0])] # Convert the list of NumPy arrays to a list of ImageClip objects clips = [mpy.ImageClip(img).set_duration(0.1) for img in img_lst] # 0.1 seconds per frame # Concatenate the ImageClips into a single VideoClip video = mpy.concatenate_videoclips(clips, method="compose") # Write the VideoClip to a file video.write_videofile(v_pth, fps=fps) # setting fps to 10 as example def parse_configs(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str) parser.add_argument("--infer", type=str) args, unknown = parser.parse_known_args() cfg = OmegaConf.create() cli_cfg = OmegaConf.from_cli(unknown) # parse from ENV if os.environ.get("APP_INFER") is not None: args.infer = os.environ.get("APP_INFER") if os.environ.get("APP_MODEL_NAME") is not None: cli_cfg.model_name = os.environ.get("APP_MODEL_NAME") args.config = args.infer if args.config is None else args.config if args.config is not None: cfg_train = OmegaConf.load(args.config) cfg.source_size = cfg_train.dataset.source_image_res try: cfg.src_head_size = cfg_train.dataset.src_head_size except: cfg.src_head_size = 112 cfg.render_size = cfg_train.dataset.render_image.high _relative_path = os.path.join( cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split("_")[-1], ) cfg.save_tmp_dump = os.path.join("exps", "save_tmp", _relative_path) cfg.image_dump = os.path.join("exps", "images", _relative_path) cfg.video_dump = os.path.join("exps", "videos", _relative_path) # output path if args.infer is not None: cfg_infer = OmegaConf.load(args.infer) cfg.merge_with(cfg_infer) cfg.setdefault( "save_tmp_dump", os.path.join("exps", cli_cfg.model_name, "save_tmp") ) cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, "images")) cfg.setdefault( "video_dump", os.path.join("dumps", cli_cfg.model_name, "videos") ) cfg.setdefault("mesh_dump", os.path.join("dumps", cli_cfg.model_name, "meshes")) cfg.motion_video_read_fps = 6 cfg.merge_with(cli_cfg) cfg.setdefault("logger", "INFO") assert cfg.model_name is not None, "model_name is required" return cfg, cfg_train def demo_lam(flametracking, lam, cfg): # @spaces.GPU(duration=80) def core_fn(image_path: str, video_params, working_dir): image_raw = os.path.join(working_dir.name, "raw.png") with Image.open(image_path).convert('RGB') as img: img.save(image_raw) base_vid = os.path.basename(video_params).split(".")[0] flame_params_dir = os.path.join("./assets/sample_motion/export", base_vid, "flame_param") base_iid = os.path.basename(image_path).split('.')[0] image_path = os.path.join("./assets/sample_input", base_iid, "images/00000_00.png") dump_video_path = os.path.join(working_dir.name, "output.mp4") dump_image_path = os.path.join(working_dir.name, "output.png") # prepare dump paths omit_prefix = os.path.dirname(image_raw) image_name = os.path.basename(image_raw) uid = image_name.split(".")[0] subdir_path = os.path.dirname(image_raw).replace(omit_prefix, "") subdir_path = ( subdir_path[1:] if subdir_path.startswith("/") else subdir_path ) print("subdir_path and uid:", subdir_path, uid) motion_seqs_dir = flame_params_dir dump_image_dir = os.path.dirname(dump_image_path) os.makedirs(dump_image_dir, exist_ok=True) print(image_raw, motion_seqs_dir, dump_image_dir, dump_video_path) dump_tmp_dir = dump_image_dir if os.path.exists(dump_video_path): return dump_image_path, dump_video_path motion_img_need_mask = cfg.get("motion_img_need_mask", False) # False vis_motion = cfg.get("vis_motion", False) # False # preprocess input image: segmentation, flame params estimation return_code = flametracking.preprocess(image_raw) assert (return_code == 0), "flametracking preprocess failed!" return_code = flametracking.optimize() assert (return_code == 0), "flametracking optimize failed!" return_code, output_dir = flametracking.export() assert (return_code == 0), "flametracking export failed!" image_path = os.path.join(output_dir, "images/00000_00.png") mask_path = image_path.replace("/images/", "/fg_masks/").replace(".jpg", ".png") print(image_path, mask_path) aspect_standard = 1.0/1.0 source_size = cfg.source_size render_size = cfg.render_size render_fps = 30 # prepare reference image image, _, _, shape_param = preprocess_image(image_path, mask_path=mask_path, intr=None, pad_ratio=0, bg_color=1., max_tgt_size=None, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0], render_tgt_size=source_size, multiply=14, need_mask=True, get_shape_param=True) # save masked image for vis save_ref_img_path = os.path.join(dump_tmp_dir, "output.png") vis_ref_img = (image[0].permute(1, 2, 0).cpu().detach().numpy() * 255).astype(np.uint8) Image.fromarray(vis_ref_img).save(save_ref_img_path) # prepare motion seq src = image_path.split('/')[-3] driven = motion_seqs_dir.split('/')[-2] src_driven = [src, driven] motion_seq = prepare_motion_seqs(motion_seqs_dir, None, save_root=dump_tmp_dir, fps=render_fps, bg_color=1., aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0], render_image_res=render_size, multiply=16, need_mask=motion_img_need_mask, vis_motion=vis_motion, shape_param=shape_param, test_sample=False, cross_id=False, src_driven=src_driven) # start inference motion_seq["flame_params"]["betas"] = shape_param.unsqueeze(0) device, dtype = "cuda", torch.float32 print("start to inference...................") with torch.no_grad(): # TODO check device and dtype res = lam.infer_single_view(image.unsqueeze(0).to(device, dtype), None, None, render_c2ws=motion_seq["render_c2ws"].to(device), render_intrs=motion_seq["render_intrs"].to(device), render_bg_colors=motion_seq["render_bg_colors"].to(device), flame_params={k:v.to(device) for k, v in motion_seq["flame_params"].items()}) rgb = res["comp_rgb"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 mask = res["comp_mask"].detach().cpu().numpy() # [Nv, H, W, 3], 0-1 mask[mask < 0.5] = 0.0 rgb = rgb * mask + (1 - mask) * 1 rgb = (np.clip(rgb, 0, 1.0) * 255).astype(np.uint8) if vis_motion: vis_ref_img = np.tile( cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]), interpolation=cv2.INTER_AREA)[None, :, :, :], (rgb.shape[0], 1, 1, 1), ) rgb = np.concatenate([vis_ref_img, rgb, motion_seq["vis_motion_render"]], axis=2) os.makedirs(os.path.dirname(dump_video_path), exist_ok=True) save_imgs_2_video(rgb, dump_video_path, render_fps) # images_to_video(rgb, output_path=dump_video_path, fps=30, gradio_codec=False, verbose=True) return dump_image_path, dump_video_path with gr.Blocks(analytics_enabled=False) as demo: logo_url = './assets/images/logo.png' logo_base64 = get_image_base64(logo_url) gr.HTML(f"""

LAM: Large Avatar Model for One-shot Animatable Gaussian Head

""") gr.HTML( """

Notes: Inputing front-face images or face orientation close to the driven signal gets better results.

""" ) # DISPLAY with gr.Row(): with gr.Column(variant='panel', scale=1): with gr.Tabs(elem_id='lam_input_image'): with gr.TabItem('Input Image'): with gr.Row(): input_image = gr.Image(label='Input Image', image_mode='RGB', height=480, width=270, sources='upload', type='filepath', # 'numpy', elem_id='content_image') # EXAMPLES with gr.Row(): examples = [ ['assets/sample_input/2w01/images/2w01.png'], ['assets/sample_input/2w02/images/2w02.png'], ['assets/sample_input/2w03/images/2w03.png'], ['assets/sample_input/2w04/images/2w04.png'], ] gr.Examples( examples=examples, inputs=[input_image], examples_per_page=20, ) with gr.Column(): with gr.Tabs(elem_id='lam_input_video'): with gr.TabItem('Input Video'): with gr.Row(): video_input = gr.Video(label='Input Video', height=480, width=270, interactive=False) examples = [ './assets/sample_motion/export/clip1/clip1.mp4', './assets/sample_motion/export/clip2/clip2.mp4', './assets/sample_motion/export/clip3/clip3.mp4', ] gr.Examples( examples=examples, inputs=[video_input], examples_per_page=20, ) with gr.Column(variant='panel', scale=1): with gr.Tabs(elem_id='lam_processed_image'): with gr.TabItem('Processed Image'): with gr.Row(): processed_image = gr.Image( label='Processed Image', image_mode='RGBA', type='filepath', elem_id='processed_image', height=480, width=270, interactive=False) with gr.Column(variant='panel', scale=1): with gr.Tabs(elem_id='lam_render_video'): with gr.TabItem('Rendered Video'): with gr.Row(): output_video = gr.Video(label='Rendered Video', format='mp4', height=480, width=270, autoplay=True) # SETTING with gr.Row(): with gr.Column(variant='panel', scale=1): submit = gr.Button('Generate', elem_id='lam_generate', variant='primary') working_dir = gr.State() submit.click( fn=assert_input_image, inputs=[input_image], queue=False, ).success( fn=prepare_working_dir, outputs=[working_dir], queue=False, ).success( fn=core_fn, inputs=[input_image, video_input, working_dir], # video_params refer to smpl dir outputs=[processed_image, output_video], ) demo.queue() demo.launch() def _build_model(cfg): from lam.models import model_dict from lam.utils.hf_hub import wrap_model_hub hf_model_cls = wrap_model_hub(model_dict["lam"]) model = hf_model_cls.from_pretrained(cfg.model_name) return model def launch_gradio_app(): os.environ.update({ 'APP_ENABLED': '1', 'APP_MODEL_NAME': './exps/releases/lam/lam-20k/step_045500/', 'APP_INFER': './configs/inference/lam-20k-8gpu.yaml', 'APP_TYPE': 'infer.lam', 'NUMBA_THREADING_LAYER': 'omp', }) cfg, _ = parse_configs() lam = _build_model(cfg) lam.to('cuda') flametracking = FlameTrackingSingleImage(output_dir='tracking_output', alignment_model_path='./pretrain_model/68_keypoints_model.pkl', vgghead_model_path='./pretrain_model/vgghead/vgg_heads_l.trcd', human_matting_path='./pretrain_model/matting/stylematte_synth.pt', facebox_model_path='./pretrain_model/FaceBoxesV2.pth', detect_iris_landmarks=True) demo_lam(flametracking, lam, cfg) if __name__ == '__main__': # launch_pretrained() # launch_env_not_compile_with_cuda() launch_gradio_app()