Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import defaultdict | |
import os | |
import glob | |
from typing import Union | |
import random | |
import numpy as np | |
import torch | |
# from megfile import smart_path_join, smart_open | |
import json | |
from PIL import Image | |
import cv2 | |
from lam.datasets.base import BaseDataset | |
from lam.datasets.cam_utils import build_camera_standard, build_camera_principle, camera_normalization_objaverse | |
from lam.utils.proxy import no_proxy | |
from typing import Optional, Union | |
__all__ = ['VideoHeadDataset'] | |
class VideoHeadDataset(BaseDataset): | |
def __init__(self, root_dirs: str, meta_path: Optional[Union[str, list]], | |
sample_side_views: int, | |
render_image_res_low: int, render_image_res_high: int, render_region_size: int, | |
source_image_res: int, | |
repeat_num=1, | |
crop_range_ratio_hw=[1.0, 1.0], | |
aspect_standard=1.0, # h/w | |
enlarge_ratio=[0.8, 1.2], | |
debug=False, | |
is_val=False, | |
**kwargs): | |
super().__init__(root_dirs, meta_path) | |
self.sample_side_views = sample_side_views | |
self.render_image_res_low = render_image_res_low | |
self.render_image_res_high = render_image_res_high | |
if not (isinstance(render_region_size, list) or isinstance(render_region_size, tuple)): | |
render_region_size = render_region_size, render_region_size # [H, W] | |
self.render_region_size = render_region_size | |
self.source_image_res = source_image_res | |
self.uids = self.uids * repeat_num | |
self.crop_range_ratio_hw = crop_range_ratio_hw | |
self.debug = debug | |
self.aspect_standard = aspect_standard | |
assert self.render_image_res_low == self.render_image_res_high | |
self.render_image_res = self.render_image_res_low | |
self.enlarge_ratio = enlarge_ratio | |
print(f"VideoHeadDataset, data_len:{len(self.uids)}, repeat_num:{repeat_num}, debug:{debug}, is_val:{is_val}") | |
self.multiply = kwargs.get("multiply", 14) | |
# set data deterministic | |
self.is_val = is_val | |
def _load_pose(frame_info, transpose_R=False): | |
c2w = torch.eye(4) | |
c2w = np.array(frame_info["transform_matrix"]) | |
c2w[:3, 1:3] *= -1 | |
c2w = torch.FloatTensor(c2w) | |
""" | |
if transpose_R: | |
w2c = torch.inverse(c2w) | |
w2c[:3, :3] = w2c[:3, :3].transpose(1, 0).contiguous() | |
c2w = torch.inverse(w2c) | |
""" | |
intrinsic = torch.eye(4) | |
intrinsic[0, 0] = frame_info["fl_x"] | |
intrinsic[1, 1] = frame_info["fl_y"] | |
intrinsic[0, 2] = frame_info["cx"] | |
intrinsic[1, 2] = frame_info["cy"] | |
intrinsic = intrinsic.float() | |
return c2w, intrinsic | |
def img_center_padding(self, img_np, pad_ratio): | |
ori_w, ori_h = img_np.shape[:2] | |
w = round((1 + pad_ratio) * ori_w) | |
h = round((1 + pad_ratio) * ori_h) | |
if len(img_np.shape) > 2: | |
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8) | |
else: | |
img_pad_np = np.zeros((w, h), dtype=np.uint8) | |
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2 | |
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np | |
return img_pad_np | |
def resize_image_keepaspect_np(self, img, max_tgt_size): | |
""" | |
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio | |
""" | |
h, w = img.shape[:2] | |
ratio = max_tgt_size / max(h, w) | |
new_h, new_w = round(h * ratio), round(w * ratio) | |
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA) | |
def center_crop_according_to_mask(self, img, mask, aspect_standard, enlarge_ratio): | |
""" | |
img: [H, W, 3] | |
mask: [H, W] | |
""" | |
ys, xs = np.where(mask > 0) | |
if len(xs) == 0 or len(ys) == 0: | |
raise Exception("empty mask") | |
x_min = np.min(xs) | |
x_max = np.max(xs) | |
y_min = np.min(ys) | |
y_max = np.max(ys) | |
center_x, center_y = img.shape[1]//2, img.shape[0]//2 | |
half_w = max(abs(center_x - x_min), abs(center_x - x_max)) | |
half_h = max(abs(center_y - y_min), abs(center_y - y_max)) | |
aspect = half_h / half_w | |
if aspect >= aspect_standard: | |
half_w = round(half_h / aspect_standard) | |
else: | |
half_h = round(half_w * aspect_standard) | |
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01: | |
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio | |
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w) | |
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max) | |
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min) | |
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min | |
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w) | |
assert half_h <= center_y | |
assert half_w <= center_x | |
assert abs(half_h / half_w - aspect_standard) < 0.03 | |
offset_x = center_x - half_w | |
offset_y = center_y - half_h | |
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] | |
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] | |
return new_img, new_mask, offset_x, offset_y | |
def load_rgb_image_with_aug_bg(self, rgb_path, mask_path, bg_color, pad_ratio, max_tgt_size, aspect_standard, enlarge_ratio, | |
render_tgt_size, multiply, intr): | |
rgb = np.array(Image.open(rgb_path)) | |
interpolation = cv2.INTER_AREA | |
if rgb.shape[0] != 1024 and rgb.shape[0] == rgb.shape[1]: | |
rgb = cv2.resize(rgb, (1024, 1024), interpolation=interpolation) | |
if pad_ratio > 0: | |
rgb = self.img_center_padding(rgb, pad_ratio) | |
rgb = rgb / 255.0 | |
if mask_path is not None: | |
if os.path.exists(mask_path): | |
mask = np.array(Image.open(mask_path)) > 180 | |
if len(mask.shape) == 3: | |
mask = mask[..., 0] | |
assert pad_ratio == 0 | |
# if pad_ratio > 0: | |
# mask = self.img_center_padding(mask, pad_ratio) | |
# mask = mask / 255.0 | |
else: | |
# print("no mask file") | |
mask = (rgb >= 0.99).sum(axis=2) == 3 | |
mask = np.logical_not(mask) | |
# erode | |
mask = (mask * 255).astype(np.uint8) | |
kernel_size, iterations = 3, 7 | |
kernel = np.ones((kernel_size, kernel_size), np.uint8) | |
mask = cv2.erode(mask, kernel, iterations=iterations) / 255.0 | |
else: | |
# rgb: [H, W, 4] | |
assert rgb.shape[2] == 4 | |
mask = rgb[:, :, 3] # [H, W] | |
if len(mask.shape) > 2: | |
mask = mask[:, :, 0] | |
mask = (mask > 0.5).astype(np.float32) | |
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) | |
# crop image to enlarge face area. | |
try: | |
rgb, mask, offset_x, offset_y = self.center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio) | |
except Exception as ex: | |
print(rgb_path, mask_path, ex) | |
intr[0, 2] -= offset_x | |
intr[1, 2] -= offset_y | |
# resize to render_tgt_size for training | |
tgt_hw_size, ratio_y, ratio_x = self.calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2], | |
aspect_standard=aspect_standard, | |
tgt_size=render_tgt_size, multiply=multiply) | |
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation) | |
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation) | |
intr = self.scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) | |
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}" | |
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}" | |
intr[0, 2] = rgb.shape[1] // 2 | |
intr[1, 2] = rgb.shape[0] // 2 | |
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) | |
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) | |
return rgb, mask, intr | |
def scale_intrs(self, intrs, ratio_x, ratio_y): | |
if len(intrs.shape) >= 3: | |
intrs[:, 0] = intrs[:, 0] * ratio_x | |
intrs[:, 1] = intrs[:, 1] * ratio_y | |
else: | |
intrs[0] = intrs[0] * ratio_x | |
intrs[1] = intrs[1] * ratio_y | |
return intrs | |
def uniform_sample_in_chunk(self, sample_num, sample_data): | |
chunks = np.array_split(sample_data, sample_num) | |
select_list = [] | |
for chunk in chunks: | |
select_list.append(np.random.choice(chunk)) | |
return select_list | |
def uniform_sample_in_chunk_det(self, sample_num, sample_data): | |
chunks = np.array_split(sample_data, sample_num) | |
select_list = [] | |
for chunk in chunks: | |
select_list.append(chunk[len(chunk)//2]) | |
return select_list | |
def calc_new_tgt_size(self, cur_hw, tgt_size, multiply): | |
ratio = tgt_size / min(cur_hw) | |
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1]) | |
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply | |
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] | |
return tgt_size, ratio_y, ratio_x | |
def calc_new_tgt_size_by_aspect(self, cur_hw, aspect_standard, tgt_size, multiply): | |
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03 | |
tgt_size = tgt_size * aspect_standard, tgt_size | |
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply | |
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] | |
return tgt_size, ratio_y, ratio_x | |
def load_flame_params(self, flame_file_path, teeth_bs=None): | |
flame_param = dict(np.load(flame_file_path), allow_pickle=True) | |
flame_param_tensor = {} | |
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0] | |
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0] | |
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0] | |
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0] | |
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0] | |
flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0] | |
if teeth_bs is not None: | |
flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs) | |
# flame_param_tensor['expr'] = torch.cat([flame_param_tensor['expr'], flame_param_tensor['teeth_bs']], dim=0) | |
return flame_param_tensor | |
def inner_get_item(self, idx): | |
""" | |
Loaded contents: | |
rgbs: [M, 3, H, W] | |
poses: [M, 3, 4], [R|t] | |
intrinsics: [3, 2], [[fx, fy], [cx, cy], [weight, height]] | |
""" | |
crop_ratio_h, crop_ratio_w = self.crop_range_ratio_hw | |
uid = self.uids[idx] | |
if len(uid.split('/')) == 1: | |
uid = os.path.join(self.root_dirs, uid) | |
mode_str = "train" if not self.is_val else "test" | |
transforms_json = os.path.join(uid, f"transforms_{mode_str}.json") | |
with open(transforms_json) as fp: | |
data = json.load(fp) | |
cor_flame_path = transforms_json.replace('transforms_{}.json'.format(mode_str),'canonical_flame_param.npz') | |
flame_param = np.load(cor_flame_path) | |
shape_param = torch.FloatTensor(flame_param['shape']) | |
# data['static_offset'] = flame_param['static_offset'] | |
all_frames = data["frames"] | |
sample_total_views = self.sample_side_views + 1 | |
if len(all_frames) >= self.sample_side_views: | |
if not self.is_val: | |
if np.random.rand() < 0.7 and len(all_frames) > sample_total_views: | |
frame_id_list = self.uniform_sample_in_chunk(sample_total_views, np.arange(len(all_frames))) | |
else: | |
replace = len(all_frames) < sample_total_views | |
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace) | |
else: | |
if len(all_frames) > sample_total_views: | |
frame_id_list = self.uniform_sample_in_chunk_det(sample_total_views, np.arange(len(all_frames))) | |
else: | |
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=True) | |
else: | |
if not self.is_val: | |
replace = len(all_frames) < sample_total_views | |
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace) | |
else: | |
if len(all_frames) > 1: | |
frame_id_list = np.linspace(0, len(all_frames) - 1, num=sample_total_views, endpoint=True) | |
frame_id_list = [round(e) for e in frame_id_list] | |
else: | |
frame_id_list = [0 for i in range(sample_total_views)] | |
cam_id_list = frame_id_list | |
assert self.sample_side_views + 1 == len(frame_id_list) | |
# source images | |
c2ws, intrs, rgbs, bg_colors, masks = [], [], [], [], [] | |
flame_params = [] | |
teeth_bs_pth = os.path.join(uid, "tracked_teeth_bs.npz") | |
use_teeth = False | |
if os.path.exists(teeth_bs_pth) and use_teeth: | |
teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth'] | |
else: | |
teeth_bs_lst = None | |
for cam_id, frame_id in zip(cam_id_list, frame_id_list): | |
frame_info = all_frames[frame_id] | |
frame_path = os.path.join(uid, frame_info["file_path"]) | |
if 'nersemble' in frame_path or "tiktok_v34" in frame_path: | |
mask_path = os.path.join(uid, frame_info["fg_mask_path"]) | |
else: | |
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg") | |
if not os.path.exists(mask_path): | |
mask_path = os.path.join(uid, frame_info["fg_mask_path"]) | |
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None | |
flame_path = os.path.join(uid, frame_info["flame_param_path"]) | |
flame_param = self.load_flame_params(flame_path, teeth_bs) | |
# if cam_id == 0: | |
# shape_param = flame_param["betas"] | |
c2w, ori_intrinsic = self._load_pose(frame_info, transpose_R="nersemble" in frame_path) | |
bg_color = random.choice([0.0, 0.5, 1.0]) # 1.0 | |
# if self.is_val: | |
# bg_color = 1.0 | |
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path, | |
bg_color=bg_color, | |
pad_ratio=0, | |
max_tgt_size=None, | |
aspect_standard=self.aspect_standard, | |
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0], | |
render_tgt_size=self.render_image_res, | |
multiply=16, | |
intr=ori_intrinsic.clone()) | |
c2ws.append(c2w) | |
rgbs.append(rgb) | |
bg_colors.append(bg_color) | |
intrs.append(intrinsic) | |
flame_params.append(flame_param) | |
masks.append(mask) | |
c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4] | |
intrs = torch.stack(intrs, dim=0) # [N, 4, 4] | |
rgbs = torch.cat(rgbs, dim=0) # [N, 3, H, W] | |
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3] | |
masks = torch.cat(masks, dim=0) # [N, 1, H, W] | |
flame_params_tmp = defaultdict(list) | |
for flame in flame_params: | |
for k, v in flame.items(): | |
flame_params_tmp[k].append(v) | |
for k, v in flame_params_tmp.items(): | |
flame_params_tmp[k] = torch.stack(v) | |
flame_params = flame_params_tmp | |
# TODO check different betas for same person | |
flame_params["betas"] = shape_param | |
# reference images | |
prob_refidx = np.ones(self.sample_side_views + 1) | |
if not self.is_val: | |
prob_refidx[0] = 0.5 # front_prob | |
else: | |
prob_refidx[0] = 1.0 | |
# print(frame_id_list, kinect_color_list, prob_refidx[0]) | |
prob_refidx[1:] = (1 - prob_refidx[0]) / len(prob_refidx[1:]) | |
ref_idx = np.random.choice(self.sample_side_views + 1, p=prob_refidx) | |
cam_id_source_list = cam_id_list[ref_idx: ref_idx + 1] | |
frame_id_source_list = frame_id_list[ref_idx: ref_idx + 1] | |
source_c2ws, source_intrs, source_rgbs, source_flame_params = [], [], [], [] | |
for cam_id, frame_id in zip(cam_id_source_list, frame_id_source_list): | |
frame_info = all_frames[frame_id] | |
frame_path = os.path.join(uid, frame_info["file_path"]) | |
if 'nersemble' in frame_path: | |
mask_path = os.path.join(uid, frame_info["fg_mask_path"]) | |
else: | |
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg") | |
flame_path = os.path.join(uid, frame_info["flame_param_path"]) | |
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None | |
flame_param = self.load_flame_params(flame_path, teeth_bs) | |
c2w, ori_intrinsic = self._load_pose(frame_info) | |
# bg_color = 1.0 | |
# bg_color = 0.0 | |
bg_color = random.choice([0.0, 0.5, 1.0]) # 1. | |
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path, | |
bg_color=bg_color, | |
pad_ratio=0, | |
max_tgt_size=None, | |
aspect_standard=self.aspect_standard, | |
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0], | |
render_tgt_size=self.source_image_res, | |
multiply=self.multiply, | |
intr=ori_intrinsic.clone()) | |
source_c2ws.append(c2w) | |
source_intrs.append(intrinsic) | |
source_rgbs.append(rgb) | |
source_flame_params.append(flame_param) | |
source_c2ws = torch.stack(source_c2ws, dim=0) | |
source_intrs = torch.stack(source_intrs, dim=0) | |
source_rgbs = torch.cat(source_rgbs, dim=0) | |
flame_params_tmp = defaultdict(list) | |
for flame in source_flame_params: | |
for k, v in flame.items(): | |
flame_params_tmp['source_'+k].append(v) | |
for k, v in flame_params_tmp.items(): | |
flame_params_tmp[k] = torch.stack(v) | |
source_flame_params = flame_params_tmp | |
# TODO check different betas for same person | |
source_flame_params["source_betas"] = shape_param | |
render_image = rgbs | |
render_mask = masks | |
tgt_size = render_image.shape[2:4] # [H, W] | |
assert abs(intrs[0, 0, 2] * 2 - render_image.shape[3]) <= 1.1, f"{intrs[0, 0, 2] * 2}, {render_image.shape}" | |
assert abs(intrs[0, 1, 2] * 2 - render_image.shape[2]) <= 1.1, f"{intrs[0, 1, 2] * 2}, {render_image.shape}" | |
ret = { | |
'uid': uid, | |
'source_c2ws': source_c2ws, # [N1, 4, 4] | |
'source_intrs': source_intrs, # [N1, 4, 4] | |
'source_rgbs': source_rgbs.clamp(0, 1), # [N1, 3, H, W] | |
'render_image': render_image.clamp(0, 1), # [N, 3, H, W] | |
'render_mask': render_mask.clamp(0, 1), #[ N, 1, H, W] | |
'c2ws': c2ws, # [N, 4, 4] | |
'intrs': intrs, # [N, 4, 4] | |
'render_full_resolutions': torch.tensor([tgt_size], dtype=torch.float32).repeat(self.sample_side_views + 1, 1), # [N, 2] | |
'render_bg_colors': bg_colors, # [N, 3] | |
'pytorch3d_transpose_R': torch.Tensor(["nersemble" in frame_path]), # [1] | |
} | |
#['root_pose', 'body_pose', 'jaw_pose', 'leye_pose', 'reye_pose', 'lhand_pose', 'rhand_pose', 'expr', 'trans', 'betas'] | |
# 'flame_params': flame_params, # dict: body_pose:[N, 21, 3], | |
ret.update(flame_params) | |
ret.update(source_flame_params) | |
return ret | |
def gen_valid_id_json(): | |
root_dir = "./train_data/vfhq_vhap/export" | |
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json" | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
valid_id_list = [] | |
for file in os.listdir(root_dir): | |
if not file.startswith("."): | |
valid_id_list.append(file) | |
print(len(valid_id_list), valid_id_list[:2]) | |
with open(save_path, "w") as fp: | |
json.dump(valid_id_list, fp) | |
def gen_valid_id_json(): | |
root_dir = "./train_data/vfhq_vhap/export" | |
mask_root_dir = "./train_data/vfhq_vhap/mask" | |
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json" | |
os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
valid_id_list = [] | |
for file in os.listdir(root_dir): | |
if not file.startswith(".") and ".txt" not in file: | |
valid_id_list.append(file) | |
print("raw:", len(valid_id_list), valid_id_list[:2]) | |
mask_valid_id_list = [] | |
for file in os.listdir(mask_root_dir): | |
if not file.startswith(".") and ".txt" not in file: | |
mask_valid_id_list.append(file) | |
print("mask:", len(mask_valid_id_list), mask_valid_id_list[:2]) | |
valid_id_list = list(set(valid_id_list).intersection(set(mask_valid_id_list))) | |
print("intesection:", len(mask_valid_id_list), mask_valid_id_list[:2]) | |
with open(save_path, "w") as fp: | |
json.dump(valid_id_list, fp) | |
save_train_path = "./train_data/vfhq_vhap/label/valid_id_train_list.json" | |
save_val_path = "./train_data/vfhq_vhap/label/valid_id_val_list.json" | |
valid_id_list = sorted(valid_id_list) | |
idxs = np.linspace(0, len(valid_id_list)-1, num=20, endpoint=True).astype(np.int64) | |
valid_id_train_list = [] | |
valid_id_val_list = [] | |
for i in range(len(valid_id_list)): | |
if i in idxs: | |
valid_id_val_list.append(valid_id_list[i]) | |
else: | |
valid_id_train_list.append(valid_id_list[i]) | |
print(len(valid_id_train_list), len(valid_id_val_list), valid_id_val_list) | |
with open(save_train_path, "w") as fp: | |
json.dump(valid_id_train_list, fp) | |
with open(save_val_path, "w") as fp: | |
json.dump(valid_id_val_list, fp) | |
if __name__ == "__main__": | |
import trimesh | |
import cv2 | |
root_dir = "./train_data/vfhq_vhap/export" | |
meta_path = "./train_data/vfhq_vhap/label/valid_id_list.json" | |
dataset = VideoHeadDataset(root_dirs=root_dir, meta_path=meta_path, sample_side_views=15, | |
render_image_res_low=512, render_image_res_high=512, | |
render_region_size=(512, 512), source_image_res=512, | |
enlarge_ratio=[0.8, 1.2], | |
debug=False, is_val=False) | |
from lam.models.rendering.flame_model.flame import FlameHeadSubdivided | |
# subdivided flame | |
subdivide = 2 | |
flame_sub_model = FlameHeadSubdivided( | |
300, | |
100, | |
add_teeth=True, | |
add_shoulder=False, | |
flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl', | |
flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy", | |
flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj", | |
flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl", | |
subdivide_num=subdivide, | |
teeth_bs_flag=False, | |
).cuda() | |
source_key = "source_rgbs" | |
render_key = "render_image" | |
for idx, data in enumerate(dataset): | |
import boxx | |
boxx.tree(data) | |
if idx > 0: | |
exit(0) | |
os.makedirs("debug_vis/dataloader", exist_ok=True) | |
for i in range(data[source_key].shape[0]): | |
cv2.imwrite(f"debug_vis/dataloader/{source_key}_{i}_b{idx}.jpg", ((data[source_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8))) | |
for i in range(data[render_key].shape[0]): | |
cv2.imwrite(f"debug_vis/dataloader/rgbs{i}_b{idx}.jpg", ((data[render_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8))) | |
save_root = "./debug_vis/dataloader" | |
os.makedirs(save_root, exist_ok=True) | |
shape = data['betas'].to('cuda') | |
flame_param = {} | |
flame_param['expr'] = data['expr'].to('cuda') | |
flame_param['rotation'] = data['rotation'].to('cuda') | |
flame_param['neck'] = data['neck_pose'].to('cuda') | |
flame_param['jaw'] = data['jaw_pose'].to('cuda') | |
flame_param['eyes'] = data['eyes_pose'].to('cuda') | |
flame_param['translation'] = data['translation'].to('cuda') | |
v_cano = flame_sub_model.get_cano_verts( | |
shape.unsqueeze(0) | |
) | |
ret = flame_sub_model.animation_forward( | |
v_cano.repeat(flame_param['expr'].shape[0], 1, 1), | |
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1), | |
flame_param['expr'], | |
flame_param['rotation'], | |
flame_param['neck'], | |
flame_param['jaw'], | |
flame_param['eyes'], | |
flame_param['translation'], | |
zero_centered_at_root_node=False, | |
return_landmarks=False, | |
return_verts_cano=True, | |
# static_offset=batch_data['static_offset'].to('cuda'), | |
static_offset=None, | |
) | |
import boxx | |
boxx.tree(data) | |
boxx.tree(ret) | |
for i in range(ret["animated"].shape[0]): | |
mesh = trimesh.Trimesh() | |
mesh.vertices = np.array(ret["animated"][i].cpu().squeeze()) | |
mesh.faces = np.array(flame_sub_model.faces.cpu().squeeze()) | |
mesh.export(f'{save_root}/animated_sub{subdivide}_{i}.obj') | |
intr = data["intrs"][i] | |
from lam.models.rendering.utils.vis_utils import render_mesh | |
cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]), | |
"princpt": torch.tensor([intr[0, 2], intr[1, 2]])} | |
render_shape = data[render_key].shape[2:] # int(cam_param['princpt'][1]* 2), int(cam_param['princpt'][0] * 2) | |
face = flame_sub_model.faces.cpu().squeeze().numpy() | |
vertices = ret["animated"][i].cpu().squeeze() | |
c2ws = data["c2ws"][i] | |
w2cs = torch.inverse(c2ws) | |
if data['pytorch3d_transpose_R'][0] > 0: | |
R = w2cs[:3, :3].transpose(1, 0) | |
else: | |
R = w2cs[:3, :3] | |
T = w2cs[:3, 3] | |
vertices = vertices @ R + T | |
mesh_render, is_bkg = render_mesh(vertices, face, cam_param=cam_param, | |
bkg=np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32) * 255, | |
return_bg_mask=True) | |
rgb_mesh = mesh_render.astype(np.uint8) | |
t_image = (data[render_key][i].permute(1, 2, 0)*255).numpy().astype(np.uint8) | |
blend_ratio = 0.7 | |
vis_img = np.concatenate([rgb_mesh, t_image, (blend_ratio * rgb_mesh + (1 - blend_ratio) * t_image).astype(np.uint8)], axis=1) | |
cam_idx = int(data.get('cam_idxs', [i for j in range(16)])[i]) | |
cv2.imwrite(os.path.join(save_root, f"render_{cam_idx}.jpg"), vis_img[:, :, (2, 1, 0)]) | |