Update README.md
Browse files
README.md
CHANGED
@@ -18,29 +18,6 @@ library_name: sentence-transformers
|
|
18 |
|
19 |
# 🔎 KURE-v1
|
20 |
|
21 |
-
Introducing Korea University Retrieval Embedding model, KURE-v1
|
22 |
-
It has shown remarkable performance in Korean text retrieval, speficially overwhelming most multilingual embedding models.
|
23 |
-
To our knowledge, It is one of the best publicly opened Korean retrieval models.
|
24 |
-
|
25 |
-
For details, visit the [KURE repository](https://github.com/nlpai-lab/KURE)
|
26 |
-
|
27 |
-
---
|
28 |
-
|
29 |
-
## Model Versions
|
30 |
-
| Model Name | Dimension | Sequence Length | Introduction |
|
31 |
-
|:----:|:---:|:---:|:---:|
|
32 |
-
| [KURE-v1](https://huggingface.co/nlpai-lab/KURE-v1) | 1024 | 8192 | Fine-tuned [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) with Korean data via [CachedGISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss)
|
33 |
-
| [KoE5](https://huggingface.co/nlpai-lab/KoE5) | 1024 | 512 | Fine-tuned [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) with [ko-triplet-v1.0](https://huggingface.co/datasets/nlpai-lab/ko-triplet-v1.0) via [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) |
|
34 |
-
|
35 |
-
## Model Description
|
36 |
-
|
37 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub.
|
38 |
-
|
39 |
-
- **Developed by:** [NLP&AI Lab](http://nlp.korea.ac.kr/)
|
40 |
-
- **Language(s) (NLP):** Korean, English
|
41 |
-
- **License:** MIT
|
42 |
-
- **Finetuned from model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)
|
43 |
-
|
44 |
## Example code
|
45 |
### Install Dependencies
|
46 |
First install the Sentence Transformers library:
|
@@ -74,139 +51,3 @@ print(similarities)
|
|
74 |
# [0.6967, 1.0000, 0.4427],
|
75 |
# [0.5306, 0.4427, 1.0000]])
|
76 |
```
|
77 |
-
|
78 |
-
## Training Details
|
79 |
-
|
80 |
-
### Training Data
|
81 |
-
|
82 |
-
#### KURE-v1
|
83 |
-
- Korean query-document-hard_negative(5) data
|
84 |
-
- 2,000,000 examples
|
85 |
-
|
86 |
-
### Training Procedure
|
87 |
-
- **loss:** Used **[CachedGISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss)** by sentence-transformers
|
88 |
-
- **batch size:** 4096
|
89 |
-
- **learning rate:** 2e-05
|
90 |
-
- **epochs:** 1
|
91 |
-
|
92 |
-
## Evaluation
|
93 |
-
### Metrics
|
94 |
-
- Recall, Precision, NDCG, F1
|
95 |
-
### Benchmark Datasets
|
96 |
-
- [Ko-StrategyQA](https://huggingface.co/datasets/taeminlee/Ko-StrategyQA): 한국어 ODQA multi-hop 검색 데이터셋 (StrategyQA 번역)
|
97 |
-
- [AutoRAGRetrieval](https://huggingface.co/datasets/yjoonjang/markers_bm): 금융, 공공, 의료, 법률, 커머스 5개 분야에 대해, pdf를 파싱하여 구성한 한국어 문서 검색 데이터셋
|
98 |
-
- [MIRACLRetrieval]([url](https://huggingface.co/datasets/miracl/miracl)): Wikipedia 기반의 한국어 문서 검색 데이터셋
|
99 |
-
- [PublicHealthQA]([url](https://huggingface.co/datasets/xhluca/publichealth-qa)): 의료 및 공중보건 도메인에 대한 한국어 문서 검색 데이터셋
|
100 |
-
- [BelebeleRetrieval]([url](https://huggingface.co/datasets/facebook/belebele)): FLORES-200 기반의 한국어 문서 검색 데이터셋
|
101 |
-
- [MrTidyRetrieval](https://huggingface.co/datasets/mteb/mrtidy): Wikipedia 기반의 한국어 문서 검색 데이터셋
|
102 |
-
- [MultiLongDocRetrieval](https://huggingface.co/datasets/Shitao/MLDR): 다양한 도메인의 한국어 장문 검색 데이터셋
|
103 |
-
- [XPQARetrieval](https://huggingface.co/datasets/jinaai/xpqa): 다양한 도메인의 한국어 문서 검색 데이터셋
|
104 |
-
|
105 |
-
## Results
|
106 |
-
|
107 |
-
아래는 모든 모델의, 모든 벤치마크 데이터셋에 대한 평균 결과입니다.
|
108 |
-
자세한 결과는 [KURE Github](https://github.com/nlpai-lab/KURE/tree/main/eval/results)에서 확인하실 수 있습니다.
|
109 |
-
### Top-k 1
|
110 |
-
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|
111 |
-
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
|
112 |
-
| **nlpai-lab/KURE-v1** | **0.52640** | **0.60551** | **0.60551** | **0.55784** |
|
113 |
-
| dragonkue/BGE-m3-ko | 0.52361 | 0.60394 | 0.60394 | 0.55535 |
|
114 |
-
| BAAI/bge-m3 | 0.51778 | 0.59846 | 0.59846 | 0.54998 |
|
115 |
-
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.51246 | 0.59384 | 0.59384 | 0.54489 |
|
116 |
-
| nlpai-lab/KoE5 | 0.50157 | 0.57790 | 0.57790 | 0.53178 |
|
117 |
-
| intfloat/multilingual-e5-large | 0.50052 | 0.57727 | 0.57727 | 0.53122 |
|
118 |
-
| jinaai/jina-embeddings-v3 | 0.48287 | 0.56068 | 0.56068 | 0.51361 |
|
119 |
-
| BAAI/bge-multilingual-gemma2 | 0.47904 | 0.55472 | 0.55472 | 0.50916 |
|
120 |
-
| intfloat/multilingual-e5-large-instruct | 0.47842 | 0.55435 | 0.55435 | 0.50826 |
|
121 |
-
| intfloat/multilingual-e5-base | 0.46950 | 0.54490 | 0.54490 | 0.49947 |
|
122 |
-
| intfloat/e5-mistral-7b-instruct | 0.46772 | 0.54394 | 0.54394 | 0.49781 |
|
123 |
-
| Alibaba-NLP/gte-multilingual-base | 0.46469 | 0.53744 | 0.53744 | 0.49353 |
|
124 |
-
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.46633 | 0.53625 | 0.53625 | 0.49429 |
|
125 |
-
| openai/text-embedding-3-large | 0.44884 | 0.51688 | 0.51688 | 0.47572 |
|
126 |
-
| Salesforce/SFR-Embedding-2_R | 0.43748 | 0.50815 | 0.50815 | 0.46504 |
|
127 |
-
| upskyy/bge-m3-korean | 0.43125 | 0.50245 | 0.50245 | 0.45945 |
|
128 |
-
| jhgan/ko-sroberta-multitask | 0.33788 | 0.38497 | 0.38497 | 0.35678 |
|
129 |
-
|
130 |
-
### Top-k 3
|
131 |
-
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|
132 |
-
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
|
133 |
-
| **nlpai-lab/KURE-v1** | **0.68678** | **0.28711** | **0.65538** | **0.39835** |
|
134 |
-
| dragonkue/BGE-m3-ko | 0.67834 | 0.28385 | 0.64950 | 0.39378 |
|
135 |
-
| BAAI/bge-m3 | 0.67526 | 0.28374 | 0.64556 | 0.39291 |
|
136 |
-
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.67128 | 0.28193 | 0.64042 | 0.39072 |
|
137 |
-
| intfloat/multilingual-e5-large | 0.65807 | 0.27777 | 0.62822 | 0.38423 |
|
138 |
-
| nlpai-lab/KoE5 | 0.65174 | 0.27329 | 0.62369 | 0.37882 |
|
139 |
-
| BAAI/bge-multilingual-gemma2 | 0.64415 | 0.27416 | 0.61105 | 0.37782 |
|
140 |
-
| jinaai/jina-embeddings-v3 | 0.64116 | 0.27165 | 0.60954 | 0.37511 |
|
141 |
-
| intfloat/multilingual-e5-large-instruct | 0.64353 | 0.27040 | 0.60790 | 0.37453 |
|
142 |
-
| Alibaba-NLP/gte-multilingual-base | 0.63744 | 0.26404 | 0.59695 | 0.36764 |
|
143 |
-
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.63163 | 0.25937 | 0.59237 | 0.36263 |
|
144 |
-
| intfloat/multilingual-e5-base | 0.62099 | 0.26144 | 0.59179 | 0.36203 |
|
145 |
-
| intfloat/e5-mistral-7b-instruct | 0.62087 | 0.26144 | 0.58917 | 0.36188 |
|
146 |
-
| openai/text-embedding-3-large | 0.61035 | 0.25356 | 0.57329 | 0.35270 |
|
147 |
-
| Salesforce/SFR-Embedding-2_R | 0.60001 | 0.25253 | 0.56346 | 0.34952 |
|
148 |
-
| upskyy/bge-m3-korean | 0.59215 | 0.25076 | 0.55722 | 0.34623 |
|
149 |
-
| jhgan/ko-sroberta-multitask | 0.46930 | 0.18994 | 0.43293 | 0.26696 |
|
150 |
-
|
151 |
-
### Top-k 5
|
152 |
-
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|
153 |
-
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
|
154 |
-
| **nlpai-lab/KURE-v1** | **0.73851** | **0.19130** | **0.67479** | **0.29903** |
|
155 |
-
| dragonkue/BGE-m3-ko | 0.72517 | 0.18799 | 0.66692 | 0.29401 |
|
156 |
-
| BAAI/bge-m3 | 0.72954 | 0.18975 | 0.66615 | 0.29632 |
|
157 |
-
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.72962 | 0.18875 | 0.66236 | 0.29542 |
|
158 |
-
| nlpai-lab/KoE5 | 0.70820 | 0.18287 | 0.64499 | 0.28628 |
|
159 |
-
| intfloat/multilingual-e5-large | 0.70124 | 0.18316 | 0.64402 | 0.28588 |
|
160 |
-
| BAAI/bge-multilingual-gemma2 | 0.70258 | 0.18556 | 0.63338 | 0.28851 |
|
161 |
-
| jinaai/jina-embeddings-v3 | 0.69933 | 0.18256 | 0.63133 | 0.28505 |
|
162 |
-
| intfloat/multilingual-e5-large-instruct | 0.69018 | 0.17838 | 0.62486 | 0.27933 |
|
163 |
-
| Alibaba-NLP/gte-multilingual-base | 0.69365 | 0.17789 | 0.61896 | 0.27879 |
|
164 |
-
| intfloat/multilingual-e5-base | 0.67250 | 0.17406 | 0.61119 | 0.27247 |
|
165 |
-
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.67447 | 0.17114 | 0.60952 | 0.26943 |
|
166 |
-
| intfloat/e5-mistral-7b-instruct | 0.67449 | 0.17484 | 0.60935 | 0.27349 |
|
167 |
-
| openai/text-embedding-3-large | 0.66365 | 0.17004 | 0.59389 | 0.26677 |
|
168 |
-
| Salesforce/SFR-Embedding-2_R | 0.65622 | 0.17018 | 0.58494 | 0.26612 |
|
169 |
-
| upskyy/bge-m3-korean | 0.65477 | 0.17015 | 0.58073 | 0.26589 |
|
170 |
-
| jhgan/ko-sroberta-multitask | 0.53136 | 0.13264 | 0.45879 | 0.20976 |
|
171 |
-
|
172 |
-
### Top-k 10
|
173 |
-
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|
174 |
-
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
|
175 |
-
| **nlpai-lab/KURE-v1** | **0.79682** | **0.10624** | **0.69473** | **0.18524** |
|
176 |
-
| dragonkue/BGE-m3-ko | 0.78450 | 0.10492 | 0.68748 | 0.18288 |
|
177 |
-
| BAAI/bge-m3 | 0.79195 | 0.10592 | 0.68723 | 0.18456 |
|
178 |
-
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.78669 | 0.10462 | 0.68189 | 0.18260 |
|
179 |
-
| intfloat/multilingual-e5-large | 0.75902 | 0.10147 | 0.66370 | 0.17693 |
|
180 |
-
| nlpai-lab/KoE5 | 0.75296 | 0.09937 | 0.66012 | 0.17369 |
|
181 |
-
| BAAI/bge-multilingual-gemma2 | 0.76153 | 0.10364 | 0.65330 | 0.18003 |
|
182 |
-
| jinaai/jina-embeddings-v3 | 0.76277 | 0.10240 | 0.65290 | 0.17843 |
|
183 |
-
| intfloat/multilingual-e5-large-instruct | 0.74851 | 0.09888 | 0.64451 | 0.17283 |
|
184 |
-
| Alibaba-NLP/gte-multilingual-base | 0.75631 | 0.09938 | 0.64025 | 0.17363 |
|
185 |
-
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.74092 | 0.09607 | 0.63258 | 0.16847 |
|
186 |
-
| intfloat/multilingual-e5-base | 0.73512 | 0.09717 | 0.63216 | 0.16977 |
|
187 |
-
| intfloat/e5-mistral-7b-instruct | 0.73795 | 0.09777 | 0.63076 | 0.17078 |
|
188 |
-
| openai/text-embedding-3-large | 0.72946 | 0.09571 | 0.61670 | 0.16739 |
|
189 |
-
| Salesforce/SFR-Embedding-2_R | 0.71662 | 0.09546 | 0.60589 | 0.16651 |
|
190 |
-
| upskyy/bge-m3-korean | 0.71895 | 0.09583 | 0.60258 | 0.16712 |
|
191 |
-
| jhgan/ko-sroberta-multitask | 0.61225 | 0.07826 | 0.48687 | 0.13757 |
|
192 |
-
<br/>
|
193 |
-
|
194 |
-
## Citation
|
195 |
-
|
196 |
-
If you find our paper or models helpful, please consider cite as follows:
|
197 |
-
```text
|
198 |
-
@misc{KURE,
|
199 |
-
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
|
200 |
-
year = {2024},
|
201 |
-
url = {https://github.com/nlpai-lab/KURE}
|
202 |
-
},
|
203 |
-
|
204 |
-
@misc{KoE5,
|
205 |
-
author = {NLP & AI Lab and Human-Inspired AI research},
|
206 |
-
title = {KoE5: A New Dataset and Model for Improving Korean Embedding Performance},
|
207 |
-
year = {2024},
|
208 |
-
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
|
209 |
-
journal = {GitHub repository},
|
210 |
-
howpublished = {\url{https://github.com/nlpai-lab/KoE5}},
|
211 |
-
}
|
212 |
-
```
|
|
|
18 |
|
19 |
# 🔎 KURE-v1
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
## Example code
|
22 |
### Install Dependencies
|
23 |
First install the Sentence Transformers library:
|
|
|
51 |
# [0.6967, 1.0000, 0.4427],
|
52 |
# [0.5306, 0.4427, 1.0000]])
|
53 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|