Create custom_objects.py
Browse files- custom_objects.py +34 -0
custom_objects.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras import layers, models, callbacks
|
3 |
+
from tensorflow.keras.saving import register_keras_serializable
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
@register_keras_serializable()
|
7 |
+
def rainfall_proximity_penalty(inputs):
|
8 |
+
rainfall = inputs[:, 0]
|
9 |
+
distance = inputs[:, 4]
|
10 |
+
proximity_score = tf.sigmoid((150 - distance) * 0.04)
|
11 |
+
rainfall_score = tf.sigmoid((rainfall - 90) * 0.3)
|
12 |
+
return (rainfall_score * proximity_score)[:, None]
|
13 |
+
|
14 |
+
@register_keras_serializable()
|
15 |
+
def flood_risk_booster(inputs):
|
16 |
+
slope = inputs[:, 3]
|
17 |
+
rainfall = inputs[:, 0]
|
18 |
+
slope_boost = tf.sigmoid((slope - 2.0) * 1.5)
|
19 |
+
rain_boost = tf.sigmoid((rainfall - 60) * 0.25)
|
20 |
+
return (1.0 + 0.25 * slope_boost * rain_boost)[:, None]
|
21 |
+
|
22 |
+
@register_keras_serializable()
|
23 |
+
def flood_suppression_mask(inputs):
|
24 |
+
elevation = inputs[:, 2]
|
25 |
+
rainfall = inputs[:, 0]
|
26 |
+
flatness = tf.sigmoid((elevation - 9.0) * 0.6)
|
27 |
+
dryness = tf.sigmoid((20.0 - rainfall) * 0.2)
|
28 |
+
return (1.0 - 0.3 * flatness * dryness)[:, None]
|
29 |
+
|
30 |
+
CUSTOM_OBJECTS = {
|
31 |
+
"rainfall_proximity_penalty": rainfall_proximity_penalty,
|
32 |
+
"flood_risk_booster": flood_risk_booster,
|
33 |
+
"flood_suppression_mask": flood_suppression_mask
|
34 |
+
}
|