rajatkrishna commited on
Commit
59cd1aa
·
verified ·
1 Parent(s): a8b0341

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - facebook
7
+ - meta
8
+ - openvino
9
+ - llama
10
+ - llama-3
11
+ license: other
12
+ license_name: llama3
13
+ license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/LICENSE
14
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
15
+ ---
16
+
17
+ # Meta-Llama-3-8B-Instruct INT4 Quantized
18
+
19
+ - INT-4 quantized version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) created using OpenVINO
20
+
21
+ ## Model Details
22
+
23
+ Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks.
24
+
25
+ **Model developers** Meta
26
+
27
+ **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
28
+
29
+ **Input** Models input text only.
30
+
31
+ **Output** Models generate text and code only.
32
+
33
+ **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
34
+
35
+ **Model Release Date** April 18, 2024.
36
+
37
+ ## Usage
38
+
39
+ ```python
40
+ >>> from transformers import AutoTokenizer, pipeline
41
+ >>> from optimum.intel.openvino import OVModelForCausalLM
42
+
43
+ >>> model_name = 'rajatkrishna/Meta-Llama-3-8B-Instruct-OpenVINO-INT4'
44
+ >>> model = OVModelForCausalLM.from_pretrained(model_name)
45
+
46
+ >>> pipe = pipeline("text-generation", model=model, tokenizer=model_name)
47
+ >>> pipe("Hey how are you doing today?")
48
+ ```