poudel commited on
Commit
1af720b
·
verified ·
1 Parent(s): 4d9b55a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - es
5
+ tags:
6
+ - machine-learning
7
+ - random-forest
8
+ - fuel-consumption
9
+ - tabular-regression
10
+ license: apache-2.0
11
+ datasets:
12
+ - your_dataset_name
13
+ metrics:
14
+ - mean_absolute_error
15
+ - r2_score
16
+ model_name: Fuel Burn Prediction Model
17
+ model_description: >
18
+ This model predicts fuel consumption in kilograms based on truck ID,
19
+ kilometers driven, and fuel consumption in liters using a
20
+ RandomForestRegressor model.
21
+ widget:
22
+ - input:
23
+ - type: text
24
+ label: Truck ID
25
+ example: Truck_ID
26
+ - type: number
27
+ label: Kms Driven
28
+ example: 100000
29
+ - type: number
30
+ label: Litros (Fuel Consumed)
31
+ example: 150
32
+ output:
33
+ - type: number
34
+ label: Predicted Fuel Burn (kg)
35
+ score: 125.25
36
+ base_model: RandomForestRegressor
37
+ library_name: scikit-learn
38
+ ---
39
+
40
+ # Fuel Burn Prediction Model
41
+
42
+ ## Model Overview
43
+ This is a **RandomForestRegressor** model designed to predict **fuel burn** in **kilograms** based on three key features:
44
+ - **Truck ID**: Identifier of the truck (e.g., `Truck_ID`).
45
+ - **Kms Driven**: The number of kilometers the truck has driven.
46
+ - **Litros (Fuel Consumed)**: The amount of fuel consumed in liters.
47
+
48
+ The model is trained using historical data of trucks, which includes fuel consumption and distances driven. It predicts fuel consumption (in kilograms) given the truck's specific parameters.
49
+
50
+ ## Model Specifications
51
+ - **Algorithm**: Random Forest Regressor
52
+ - **Input Features**:
53
+ - Truck ID (Categorical, one-hot encoded)
54
+ - Kilometers driven (Continuous)
55
+ - Fuel consumption in liters (Continuous)
56
+ - **Output**:
57
+ - Predicted fuel burn (in kilograms)
58
+
59
+ ### Model Performance
60
+ - **R-squared (R²)**: 0.9996 on the test set.
61
+ - **Mean Absolute Error (MAE)**: 0.1513.
62
+ - **Mean Squared Error (MSE)**: Low, showing strong model performance.
63
+
64
+ These metrics indicate that the model performs exceptionally well on the test set and can generalize to unseen data with high accuracy.
65
+
66
+ ## Usage
67
+
68
+ You can load this model using `joblib` and use it to predict fuel consumption for new truck data.
69
+
70
+ ### Example Usage:
71
+
72
+ ```python
73
+ import joblib
74
+ import pandas as pd
75
+
76
+ # Load the model
77
+ model = joblib.load('fuel_burn_model.pkl')
78
+
79
+ # Example input data
80
+ input_data = pd.DataFrame({
81
+ 'Truck_ID': [0], # Truck_ID
82
+ 'Kms': [100000], # Kilometers driven
83
+ 'Litros': [150] # Fuel consumption in liters
84
+ })
85
+
86
+ # Predict fuel burn in kilograms
87
+ predicted_fuel_burn = model.predict(input_data)
88
+ print(f"Predicted fuel burn: {predicted_fuel_burn[0]:.2f} kg")