new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 25

Hardware and Software Platform Inference

It is now a common business practice to buy access to large language model (LLM) inference rather than self-host, because of significant upfront hardware infrastructure and energy costs. However, as a buyer, there is no mechanism to verify the authenticity of the advertised service including the serving hardware platform, e.g. that it is actually being served using an NVIDIA H100. Furthermore, there are reports suggesting that model providers may deliver models that differ slightly from the advertised ones, often to make them run on less expensive hardware. That way, a client pays premium for a capable model access on more expensive hardware, yet ends up being served by a (potentially less capable) cheaper model on cheaper hardware. In this paper we introduce \textbf{hardware and software platform inference (HSPI)} -- a method for identifying the underlying architecture and software stack of a (black-box) machine learning model solely based on its input-output behavior. Our method leverages the inherent differences of various architectures and compilers to distinguish between different types and software stacks. By analyzing the numerical patterns in the model's outputs, we propose a classification framework capable of accurately identifying the used for model inference as well as the underlying software configuration. Our findings demonstrate the feasibility of inferring type from black-box models. We evaluate HSPI against models served on different real hardware and find that in a white-box setting we can distinguish between different s with between 83.9% and 100% accuracy. Even in a black-box setting we are able to achieve results that are up to three times higher than random guess accuracy.

Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs

While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.

BizFinBench: A Business-Driven Real-World Financial Benchmark for Evaluating LLMs

Large language models excel in general tasks, yet assessing their reliability in logic-heavy, precision-critical domains like finance, law, and healthcare remains challenging. To address this, we introduce BizFinBench, the first benchmark specifically designed to evaluate LLMs in real-world financial applications. BizFinBench consists of 6,781 well-annotated queries in Chinese, spanning five dimensions: numerical calculation, reasoning, information extraction, prediction recognition, and knowledge-based question answering, grouped into nine fine-grained categories. The benchmark includes both objective and subjective metrics. We also introduce IteraJudge, a novel LLM evaluation method that reduces bias when LLMs serve as evaluators in objective metrics. We benchmark 25 models, including both proprietary and open-source systems. Extensive experiments show that no model dominates across all tasks. Our evaluation reveals distinct capability patterns: (1) In Numerical Calculation, Claude-3.5-Sonnet (63.18) and DeepSeek-R1 (64.04) lead, while smaller models like Qwen2.5-VL-3B (15.92) lag significantly; (2) In Reasoning, proprietary models dominate (ChatGPT-o3: 83.58, Gemini-2.0-Flash: 81.15), with open-source models trailing by up to 19.49 points; (3) In Information Extraction, the performance spread is the largest, with DeepSeek-R1 scoring 71.46, while Qwen3-1.7B scores 11.23; (4) In Prediction Recognition, performance variance is minimal, with top models scoring between 39.16 and 50.00. We find that while current LLMs handle routine finance queries competently, they struggle with complex scenarios requiring cross-concept reasoning. BizFinBench offers a rigorous, business-aligned benchmark for future research. The code and dataset are available at https://github.com/HiThink-Research/BizFinBench.

Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives

Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.

VSFormer: Value and Shape-Aware Transformer with Prior-Enhanced Self-Attention for Multivariate Time Series Classification

Multivariate time series classification is a crucial task in data mining, attracting growing research interest due to its broad applications. While many existing methods focus on discovering discriminative patterns in time series, real-world data does not always present such patterns, and sometimes raw numerical values can also serve as discriminative features. Additionally, the recent success of Transformer models has inspired many studies. However, when applying to time series classification, the self-attention mechanisms in Transformer models could introduce classification-irrelevant features, thereby compromising accuracy. To address these challenges, we propose a novel method, VSFormer, that incorporates both discriminative patterns (shape) and numerical information (value). In addition, we extract class-specific prior information derived from supervised information to enrich the positional encoding and provide classification-oriented self-attention learning, thereby enhancing its effectiveness. Extensive experiments on all 30 UEA archived datasets demonstrate the superior performance of our method compared to SOTA models. Through ablation studies, we demonstrate the effectiveness of the improved encoding layer and the proposed self-attention mechanism. Finally, We provide a case study on a real-world time series dataset without discriminative patterns to interpret our model.

Improving LLMs' Generalized Reasoning Abilities by Graph Problems

Large Language Models (LLMs) have made remarkable strides in reasoning tasks, yet their performance often falters on novel and complex problems. Domain-specific continued pretraining (CPT) methods, such as those tailored for mathematical reasoning, have shown promise but lack transferability to broader reasoning tasks. In this work, we pioneer the use of Graph Problem Reasoning (GPR) to enhance the general reasoning capabilities of LLMs. GPR tasks, spanning pathfinding, network analysis, numerical computation, and topological reasoning, require sophisticated logical and relational reasoning, making them ideal for teaching diverse reasoning patterns. To achieve this, we introduce GraphPile, the first large-scale corpus specifically designed for CPT using GPR data. Spanning 10.9 billion tokens across 23 graph tasks, the dataset includes chain-of-thought, program-of-thought, trace of execution, and real-world graph data. Using GraphPile, we train GraphMind on popular base models Llama 3 and 3.1, as well as Gemma 2, achieving up to 4.9 percent higher accuracy in mathematical reasoning and up to 21.2 percent improvement in non-mathematical reasoning tasks such as logical and commonsense reasoning. By being the first to harness GPR for enhancing reasoning patterns and introducing the first dataset of its kind, our work bridges the gap between domain-specific pretraining and universal reasoning capabilities, advancing the adaptability and robustness of LLMs.

Adapting LLM Agents Through Communication

Recent advancements in large language models (LLMs) have shown potential for human-like agents. To help these agents adapt to new tasks without extensive human supervision, we propose the Learning through Communication (LTC) paradigm, a novel training approach enabling LLM agents to improve continuously through interactions with their environments and other agents. Recent advancements in large language models (LLMs) have shown potential for human-like agents. To help these agents adapt to new tasks without extensive human supervision, we propose the Learning through Communication (LTC) paradigm, a novel training approach enabling LLM agents to improve continuously through interactions with their environments and other agents. Through iterative exploration and PPO training, LTC empowers the agent to assimilate short-term experiences into long-term memory. To optimize agent interactions for task-specific learning, we introduce three structured communication patterns: Monologue, Dialogue, and Analogue-tailored for common tasks such as decision-making, knowledge-intensive reasoning, and numerical reasoning. We evaluated LTC on three datasets: ALFWorld (decision-making), HotpotQA (knowledge-intensive reasoning), and GSM8k (numerical reasoning). On ALFWorld, it exceeds the instruction tuning baseline by 12% in success rate. On HotpotQA, LTC surpasses the instruction-tuned LLaMA-7B agent by 5.1% in EM score, and it outperforms the instruction-tuned 9x larger PaLM-62B agent by 0.6%. On GSM8k, LTC outperforms the CoT-Tuning baseline by 3.6% in accuracy. The results showcase the versatility and efficiency of the LTC approach across diverse domains. We will open-source our code to promote further development of the community.

Unsupervised Discovery of Formulas for Mathematical Constants

Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.

SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training

In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.

On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters

Seminal research in the field of graph neural networks (GNNs) has revealed a direct correspondence between the expressive capabilities of GNNs and the k-dimensional Weisfeiler-Leman (kWL) test, a widely-recognized method for verifying graph isomorphism. This connection has reignited interest in comprehending the specific graph properties effectively distinguishable by the kWL test. A central focus of research in this field revolves around determining the least dimensionality k, for which kWL can discern graphs with different number of occurrences of a pattern graph P. We refer to such a least k as the WL-dimension of this pattern counting problem. This inquiry traditionally delves into two distinct counting problems related to patterns: subgraph counting and induced subgraph counting. Intriguingly, despite their initial appearance as separate challenges with seemingly divergent approaches, both of these problems are interconnected components of a more comprehensive problem: "graph motif parameters". In this paper, we provide a precise characterization of the WL-dimension of labeled graph motif parameters. As specific instances of this result, we obtain characterizations of the WL-dimension of the subgraph counting and induced subgraph counting problem for every labeled pattern P. We additionally demonstrate that in cases where the kWL test distinguishes between graphs with varying occurrences of a pattern P, the exact number of occurrences of P can be computed uniformly using only local information of the last layer of a corresponding GNN. We finally delve into the challenge of recognizing the WL-dimension of various graph parameters. We give a polynomial time algorithm for determining the WL-dimension of the subgraph counting problem for given pattern P, answering an open question from previous work.

Faster Algorithms for Text-to-Pattern Hamming Distances

We study the classic Text-to-Pattern Hamming Distances problem: given a pattern P of length m and a text T of length n, both over a polynomial-size alphabet, compute the Hamming distance between P and T[i, ., . , i+m-1] for every shift i, under the standard Word-RAM model with Theta(log n)-bit words. - We provide an O(nm) time Las Vegas randomized algorithm for this problem, beating the decades-old O(n m log m) running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher O(nm(log mloglog m)^{1/4}) running time. Our randomized algorithm extends to the k-bounded setting, with running time Obig(n+nk{m}big), removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the (1+epsilon)-approximate version of Text-to-Pattern Hamming Distances, we give an O(epsilon^{-0.93}n) time Monte Carlo randomized algorithm, beating the previous O(epsilon^{-1}n) running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with 3SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of 3SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of 3SUM.

Nemotron-CC-Math: A 133 Billion-Token-Scale High Quality Math Pretraining Dataset

Pretraining large language models (LLMs) on high-quality, structured data such as mathematics and code substantially enhances reasoning capabilities. However, existing math-focused datasets built from Common Crawl suffer from degraded quality due to brittle extraction heuristics, lossy HTML-to-text conversion, and the failure to reliably preserve mathematical structure. In this work, we introduce Nemotron-CC-Math, a large-scale, high-quality mathematical corpus constructed from Common Crawl using a novel, domain-agnostic pipeline specifically designed for robust scientific text extraction. Unlike previous efforts, our pipeline recovers math across various formats (e.g., MathJax, KaTeX, MathML) by leveraging layout-aware rendering with lynx and a targeted LLM-based cleaning stage. This approach preserves the structural integrity of equations and code blocks while removing boilerplate, standardizing notation into LaTeX representation, and correcting inconsistencies. We collected a large, high-quality math corpus, namely Nemotron-CC-Math-3+ (133B tokens) and Nemotron-CC-Math-4+ (52B tokens). Notably, Nemotron-CC-Math-4+ not only surpasses all prior open math datasets-including MegaMath, FineMath, and OpenWebMath-but also contains 5.5 times more tokens than FineMath-4+, which was previously the highest-quality math pretraining dataset. When used to pretrain a Nemotron-T 8B model, our corpus yields +4.8 to +12.6 gains on MATH and +4.6 to +14.3 gains on MBPP+ over strong baselines, while also improving general-domain performance on MMLU and MMLU-Stem. We present the first pipeline to reliably extract scientific content--including math--from noisy web-scale data, yielding measurable gains in math, code, and general reasoning, and setting a new state of the art among open math pretraining corpora. To support open-source efforts, we release our code and datasets.

Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences

Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.

MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code

Code has been shown to be effective in enhancing the mathematical reasoning abilities of large language models due to its precision and accuracy. Previous works involving continued mathematical pretraining often include code that utilizes math-related packages, which are primarily designed for fields such as engineering, machine learning, signal processing, or module testing, rather than being directly focused on mathematical reasoning. In this paper, we introduce a novel method for generating mathematical code accompanied with corresponding reasoning steps for continued pretraining. Our approach begins with the construction of a high-quality mathematical continued pretraining dataset by incorporating math-related web data, code using mathematical packages, math textbooks, and synthetic data. Next, we construct reasoning steps by extracting LaTeX expressions, the conditions needed for the expressions, and the results of the expressions from the previously collected dataset. Based on this extracted information, we generate corresponding code to accurately capture the mathematical reasoning process. Appending the generated code to each reasoning step results in data consisting of paired natural language reasoning steps and their corresponding code. Combining this data with the original dataset results in a 19.2B-token high-performing mathematical pretraining corpus, which we name MathCode-Pile. Training several popular base models with this corpus significantly improves their mathematical abilities, leading to the creation of the MathCoder2 family of models. All of our data processing and training code is open-sourced, ensuring full transparency and easy reproducibility of the entire data collection and training pipeline. The code is released at https://github.com/mathllm/MathCoder2 .

An Interdisciplinary Comparison of Sequence Modeling Methods for Next-Element Prediction

Data of sequential nature arise in many application domains in forms of, e.g. textual data, DNA sequences, and software execution traces. Different research disciplines have developed methods to learn sequence models from such datasets: (i) in the machine learning field methods such as (hidden) Markov models and recurrent neural networks have been developed and successfully applied to a wide-range of tasks, (ii) in process mining process discovery techniques aim to generate human-interpretable descriptive models, and (iii) in the grammar inference field the focus is on finding descriptive models in the form of formal grammars. Despite their different focuses, these fields share a common goal - learning a model that accurately describes the behavior in the underlying data. Those sequence models are generative, i.e, they can predict what elements are likely to occur after a given unfinished sequence. So far, these fields have developed mainly in isolation from each other and no comparison exists. This paper presents an interdisciplinary experimental evaluation that compares sequence modeling techniques on the task of next-element prediction on four real-life sequence datasets. The results indicate that machine learning techniques that generally have no aim at interpretability in terms of accuracy outperform techniques from the process mining and grammar inference fields that aim to yield interpretable models.

Benchmarking Multimodal AutoML for Tabular Data with Text Fields

We consider the use of automated supervised learning systems for data tables that not only contain numeric/categorical columns, but one or more text fields as well. Here we assemble 18 multimodal data tables that each contain some text fields and stem from a real business application. Our publicly-available benchmark enables researchers to comprehensively evaluate their own methods for supervised learning with numeric, categorical, and text features. To ensure that any single modeling strategy which performs well over all 18 datasets will serve as a practical foundation for multimodal text/tabular AutoML, the diverse datasets in our benchmark vary greatly in: sample size, problem types (a mix of classification and regression tasks), number of features (with the number of text columns ranging from 1 to 28 between datasets), as well as how the predictive signal is decomposed between text vs. numeric/categorical features (and predictive interactions thereof). Over this benchmark, we evaluate various straightforward pipelines to model such data, including standard two-stage approaches where NLP is used to featurize the text such that AutoML for tabular data can then be applied. Compared with human data science teams, the fully automated methodology that performed best on our benchmark (stack ensembling a multimodal Transformer with various tree models) also manages to rank 1st place when fit to the raw text/tabular data in two MachineHack prediction competitions and 2nd place (out of 2380 teams) in Kaggle's Mercari Price Suggestion Challenge.

Solving Data Quality Problems with Desbordante: a Demo

Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios.

A Neural Network Solves, Explains, and Generates University Math Problems by Program Synthesis and Few-Shot Learning at Human Level

We demonstrate that a neural network pre-trained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates new questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI's Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a new dataset of questions from MIT's largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University's Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pre-trained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8% to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work is the first to automatically solve university-level mathematics course questions at a human level and the first work to explain and generate university-level mathematics course questions at scale, a milestone for higher education.

A Named Entity Based Approach to Model Recipes

Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.

Modular versus Hierarchical: A Structural Signature of Topic Popularity in Mathematical Research

Mathematical researchers, especially those in early-career positions, face critical decisions about topic specialization with limited information about the collaborative environments of different research areas. The aim of this paper is to study how the popularity of a research topic is associated with the structure of that topic's collaboration network, as observed by a suite of measures capturing organizational structure at several scales. We apply these measures to 1,938 algorithmically discovered topics across 121,391 papers sourced from arXiv metadata during the period 2020--2025. Our analysis, which controls for the confounding effects of network size, reveals a structural dichotomy--we find that popular topics organize into modular "schools of thought," while niche topics maintain hierarchical core-periphery structures centered around established experts. This divide is not an artifact of scale, but represents a size-independent structural pattern correlated with popularity. We also document a "constraint reversal": after controlling for size, researchers in popular fields face greater structural constraints on collaboration opportunities, contrary to conventional expectations. Our findings suggest that topic selection is an implicit choice between two fundamentally different collaborative environments, each with distinct implications for a researcher's career. To make these structural patterns transparent to the research community, we developed the Math Research Compass (https://mathresearchcompass.com), an interactive platform providing data on topic popularity and collaboration patterns across mathematical topics.

Learning to Mine Aligned Code and Natural Language Pairs from Stack Overflow

For tasks like code synthesis from natural language, code retrieval, and code summarization, data-driven models have shown great promise. However, creating these models require parallel data between natural language (NL) and code with fine-grained alignments. Stack Overflow (SO) is a promising source to create such a data set: the questions are diverse and most of them have corresponding answers with high-quality code snippets. However, existing heuristic methods (e.g., pairing the title of a post with the code in the accepted answer) are limited both in their coverage and the correctness of the NL-code pairs obtained. In this paper, we propose a novel method to mine high-quality aligned data from SO using two sets of features: hand-crafted features considering the structure of the extracted snippets, and correspondence features obtained by training a probabilistic model to capture the correlation between NL and code using neural networks. These features are fed into a classifier that determines the quality of mined NL-code pairs. Experiments using Python and Java as test beds show that the proposed method greatly expands coverage and accuracy over existing mining methods, even when using only a small number of labeled examples. Further, we find that reasonable results are achieved even when training the classifier on one language and testing on another, showing promise for scaling NL-code mining to a wide variety of programming languages beyond those for which we are able to annotate data.

Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework

Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains. Math Word Problems (MWPs) serve as a crucial benchmark for evaluating LLMs' reasoning abilities. While most research primarily focuses on improving accuracy, it often neglects understanding and addressing the underlying patterns of errors. Current error classification methods rely on static and predefined categories, which limit their ability to capture the full spectrum of error patterns in mathematical reasoning. To enable systematic error analysis, we collect error samples from 15 different LLMs of varying sizes across four distinct MWP datasets using multiple sampling strategies. Based on this extensive collection, we introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples that cover diverse error patterns and reasoning paths. To reduce human bias and enable fine-grained analysis of error patterns, we propose a novel framework for automated dynamic error classification in mathematical reasoning. Experimental results demonstrate that dataset characteristics significantly shape error patterns, which evolve from basic to complex manifestations as model capabilities increase. With deeper insights into error patterns, we propose error-aware prompting that incorporates common error patterns as explicit guidance, leading to significant improvements in mathematical reasoning performance.

Mathematical Capabilities of ChatGPT

We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!

On Neural Differential Equations

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Empirical analysis of Binding Precedent efficiency in the Brazilian Supreme Court via Similar Case Retrieval

Binding precedents (S\'umulas Vinculantes) constitute a juridical instrument unique to the Brazilian legal system and whose objectives include the protection of the Federal Supreme Court against repetitive demands. Studies of the effectiveness of these instruments in decreasing the Court's exposure to similar cases, however, indicate that they tend to fail in such a direction, with some of the binding precedents seemingly creating new demands. We empirically assess the legal impact of five binding precedents, 11, 14, 17, 26 and 37, at the highest court level through their effects on the legal subjects they address. This analysis is only possible through the comparison of the Court's ruling about the precedents' themes before they are created, which means that these decisions should be detected through techniques of Similar Case Retrieval. The contributions of this article are therefore twofold: on the mathematical side, we compare the uses of different methods of Natural Language Processing -- TF-IDF, LSTM, BERT, and regex -- for Similar Case Retrieval, whereas on the legal side, we contrast the inefficiency of these binding precedents with a set of hypotheses that may justify their repeated usage. We observe that the deep learning models performed significantly worse in the specific Similar Case Retrieval task and that the reasons for binding precedents to fail in responding to repetitive demand are heterogeneous and case-dependent, making it impossible to single out a specific cause.

Algorithm-assisted discovery of an intrinsic order among mathematical constants

In recent decades, a growing number of discoveries in fields of mathematics have been assisted by computer algorithms, primarily for exploring large parameter spaces that humans would take too long to investigate. As computers and algorithms become more powerful, an intriguing possibility arises - the interplay between human intuition and computer algorithms can lead to discoveries of novel mathematical concepts that would otherwise remain elusive. To realize this perspective, we have developed a massively parallel computer algorithm that discovers an unprecedented number of continued fraction formulas for fundamental mathematical constants. The sheer number of formulas discovered by the algorithm unveils a novel mathematical structure that we call the conservative matrix field. Such matrix fields (1) unify thousands of existing formulas, (2) generate infinitely many new formulas, and most importantly, (3) lead to unexpected relations between different mathematical constants, including multiple integer values of the Riemann zeta function. Conservative matrix fields also enable new mathematical proofs of irrationality. In particular, we can use them to generalize the celebrated proof by Ap\'ery for the irrationality of zeta(3). Utilizing thousands of personal computers worldwide, our computer-supported research strategy demonstrates the power of experimental mathematics, highlighting the prospects of large-scale computational approaches to tackle longstanding open problems and discover unexpected connections across diverse fields of science.

MathBridge: A Large-Scale Dataset for Translating Mathematical Expressions into Formula Images

Understanding sentences that contain mathematical expressions in text form poses significant challenges. To address this, the importance of converting these expressions into formula images has been highlighted. For instance, the expression ``x equals minus b plus or minus the square root of b squared minus four a c, all over two a'' is more readily comprehensible when displayed as an image x = -b pm sqrt{b^2 - 4ac}{2a}. To develop a text-to-image conversion system, we can break down the process into text-to-LaTeX and LaTeX-to-image conversions, with the latter being managed with by existing various LaTeX engines. However, the former approach has been notably hindered by the severe scarcity of text-to-LaTeX paired data, presenting a significant challenge in the field.In this context, we introduce MathBridge, the first extensive dataset for translating mathematical spoken English into LaTeX, which aims to establish a robust baseline for future research in text-to-LaTeX translation. MathBridge comprises approximately 23 million LaTeX formulas paired with corresponding spoken English expressions. Through comprehensive evaluations, including fine-tuning and testing with data, we discovered that MathBridge significantly enhances pre-trained language models' capabilities for text-to-LaTeX translation. Specifically, for the T5-large model, the sacreBLEU score increased from 4.77 to 46.8, demonstrating substantial enhancement. Our findings indicate the necessity for a new metric specifically for text-to-LaTeX conversion evaluation.

Privacy-Preserving Biometric Verification with Handwritten Random Digit String

Handwriting verification has stood as a steadfast identity authentication method for decades. However, this technique risks potential privacy breaches due to the inclusion of personal information in handwritten biometrics such as signatures. To address this concern, we propose using the Random Digit String (RDS) for privacy-preserving handwriting verification. This approach allows users to authenticate themselves by writing an arbitrary digit sequence, effectively ensuring privacy protection. To evaluate the effectiveness of RDS, we construct a new HRDS4BV dataset composed of online naturally handwritten RDS. Unlike conventional handwriting, RDS encompasses unconstrained and variable content, posing significant challenges for modeling consistent personal writing style. To surmount this, we propose the Pattern Attentive VErification Network (PAVENet), along with a Discriminative Pattern Mining (DPM) module. DPM adaptively enhances the recognition of consistent and discriminative writing patterns, thus refining handwriting style representation. Through comprehensive evaluations, we scrutinize the applicability of online RDS verification and showcase a pronounced outperformance of our model over existing methods. Furthermore, we discover a noteworthy forgery phenomenon that deviates from prior findings and discuss its positive impact in countering malicious impostor attacks. Substantially, our work underscores the feasibility of privacy-preserving biometric verification and propels the prospects of its broader acceptance and application.

A Framework For Refining Text Classification and Object Recognition from Academic Articles

With the widespread use of the internet, it has become increasingly crucial to extract specific information from vast amounts of academic articles efficiently. Data mining techniques are generally employed to solve this issue. However, data mining for academic articles is challenging since it requires automatically extracting specific patterns in complex and unstructured layout documents. Current data mining methods for academic articles employ rule-based(RB) or machine learning(ML) approaches. However, using rule-based methods incurs a high coding cost for complex typesetting articles. On the other hand, simply using machine learning methods requires annotation work for complex content types within the paper, which can be costly. Furthermore, only using machine learning can lead to cases where patterns easily recognized by rule-based methods are mistakenly extracted. To overcome these issues, from the perspective of analyzing the standard layout and typesetting used in the specified publication, we emphasize implementing specific methods for specific characteristics in academic articles. We have developed a novel Text Block Refinement Framework (TBRF), a machine learning and rule-based scheme hybrid. We used the well-known ACL proceeding articles as experimental data for the validation experiment. The experiment shows that our approach achieved over 95% classification accuracy and 90% detection accuracy for tables and figures.

PROSE: Predicting Operators and Symbolic Expressions using Multimodal Transformers

Approximating nonlinear differential equations using a neural network provides a robust and efficient tool for various scientific computing tasks, including real-time predictions, inverse problems, optimal controls, and surrogate modeling. Previous works have focused on embedding dynamical systems into networks through two approaches: learning a single solution operator (i.e., the mapping from input parametrized functions to solutions) or learning the governing system of equations (i.e., the constitutive model relative to the state variables). Both of these approaches yield different representations for the same underlying data or function. Additionally, observing that families of differential equations often share key characteristics, we seek one network representation across a wide range of equations. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns maps from multimodal inputs to multimodal outputs, capable of generating both numerical predictions and mathematical equations. By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations using a single trained network. Detailed experiments demonstrate that the network benefits from its multimodal nature, resulting in improved prediction accuracy and better generalization. The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms. PROSE provides a new neural network framework for differential equations which allows for more flexibility and generality in learning operators and governing equations from data.

NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task Financial Forecasting

Financial forecasting has been an important and active area of machine learning research because of the challenges it presents and the potential rewards that even minor improvements in prediction accuracy or forecasting may entail. Traditionally, financial forecasting has heavily relied on quantitative indicators and metrics derived from structured financial statements. Earnings conference call data, including text and audio, is an important source of unstructured data that has been used for various prediction tasks using deep earning and related approaches. However, current deep learning-based methods are limited in the way that they deal with numeric data; numbers are typically treated as plain-text tokens without taking advantage of their underlying numeric structure. This paper describes a numeric-oriented hierarchical transformer model to predict stock returns, and financial risk using multi-modal aligned earnings calls data by taking advantage of the different categories of numbers (monetary, temporal, percentages etc.) and their magnitude. We present the results of a comprehensive evaluation of NumHTML against several state-of-the-art baselines using a real-world publicly available dataset. The results indicate that NumHTML significantly outperforms the current state-of-the-art across a variety of evaluation metrics and that it has the potential to offer significant financial gains in a practical trading context.

Chaos as an interpretable benchmark for forecasting and data-driven modelling

The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.

A Neural-Guided Dynamic Symbolic Network for Exploring Mathematical Expressions from Data

Symbolic regression (SR) is a powerful technique for discovering the underlying mathematical expressions from observed data. Inspired by the success of deep learning, recent efforts have focused on two categories for SR methods. One is using a neural network or genetic programming to search the expression tree directly. Although this has shown promising results, the large search space poses difficulties in learning constant factors and processing high-dimensional problems. Another approach is leveraging a transformer-based model training on synthetic data and offers advantages in inference speed. However, this method is limited to fixed small numbers of dimensions and may encounter inference problems when given data is out-of-distribution compared to the synthetic data. In this work, we propose DySymNet, a novel neural-guided Dynamic Symbolic Network for SR. Instead of searching for expressions within a large search space, we explore DySymNet with various structures and optimize them to identify expressions that better-fitting the data. With a topology structure like neural networks, DySymNet not only tackles the challenge of high-dimensional problems but also proves effective in optimizing constants. Based on extensive numerical experiments using low-dimensional public standard benchmarks and the well-known SRBench with more variables, our method achieves state-of-the-art performance in terms of fitting accuracy and robustness to noise.

Exact Learning of Permutations for Nonzero Binary Inputs with Logarithmic Training Size and Quadratic Ensemble Complexity

The ability of an architecture to realize permutations is quite fundamental. For example, Large Language Models need to be able to correctly copy (and perhaps rearrange) parts of the input prompt into the output. Classical universal approximation theorems guarantee the existence of parameter configurations that solve this task but offer no insights into whether gradient-based algorithms can find them. In this paper, we address this gap by focusing on two-layer fully connected feed-forward neural networks and the task of learning permutations on nonzero binary inputs. We show that in the infinite width Neural Tangent Kernel (NTK) regime, an ensemble of such networks independently trained with gradient descent on only the k standard basis vectors out of 2^k - 1 possible inputs successfully learns any fixed permutation of length k with arbitrarily high probability. By analyzing the exact training dynamics, we prove that the network's output converges to a Gaussian process whose mean captures the ground truth permutation via sign-based features. We then demonstrate how averaging these runs (an "ensemble" method) and applying a simple rounding step yields an arbitrarily accurate prediction on any possible input unseen during training. Notably, the number of models needed to achieve exact learning with high probability (which we refer to as ensemble complexity) exhibits a linearithmic dependence on the input size k for a single test input and a quadratic dependence when considering all test inputs simultaneously.

Linguistic and Structural Basis of Engineering Design Knowledge

Artefact descriptions are the primary carriers of engineering design knowledge that is both an outcome and a driver of the design process. While an artefact could be described in different connotations, the design process requires a description to embody engineering design knowledge, which is expressed in the text through intricate placement of entities and relationships. As large-language models learn from all kinds of text merely as a sequence of characters/tokens, these are yet to generate text that embodies explicit engineering design facts. Existing ontological design theories are less likely to guide the large-language models whose applications are currently limited to ideation and learning purposes. In this article, we explicate engineering design knowledge as knowledge graphs from a large sample of 33,881 patent documents. We examine the constituents of these knowledge graphs to understand the linguistic and structural basis of engineering design knowledge. In terms of linguistic basis, we observe that entities and relationships could be generalised to 64 and 24 linguistic syntaxes. While relationships mainly capture attributes ('of'), structure ('in', 'with'), purpose ('to', 'for'), hierarchy ('include'), exemplification ('such as'), and behaviour ('to', 'from'), the hierarchical relationships could specifically be identified using 75 unique syntaxes. To understand the structural basis, we draw inspiration from various studies on biological/ecological networks and discover motifs from patent knowledge graphs. We identify four 3-node and four 4-node patterns that could further be converged and simplified into sequence [->...->], aggregation [->...<-], and hierarchy [<-...->]. Expected to guide large-language model based design tools, we propose few regulatory precepts for concretising abstract entities and relationships within subgraphs, while explicating hierarchical structures.

Linking Datasets on Organizations Using Half A Billion Open Collaborated Records

Scholars studying organizations often work with multiple datasets lacking shared unique identifiers or covariates. In such situations, researchers may turn to approximate string matching methods to combine datasets. String matching, although useful, faces fundamental challenges. Even when two strings appear similar to humans, fuzzy matching often does not work because it fails to adapt to the informativeness of the character combinations presented. Worse, many entities have multiple names that are dissimilar (e.g., "Fannie Mae" and "Federal National Mortgage Association"), a case where string matching has little hope of succeeding. This paper introduces data from a prominent employment-related networking site (LinkedIn) as a tool to address these problems. We propose interconnected approaches to leveraging the massive amount of information from LinkedIn regarding organizational name-to-name links. The first approach builds a machine learning model for predicting matches from character strings, treating the trillions of user-contributed organizational name pairs as a training corpus: this approach constructs a string matching metric that explicitly maximizes match probabilities. A second approach identifies relationships between organization names using network representations of the LinkedIn data. A third approach combines the first and second. We document substantial improvements over fuzzy matching in applications, making all methods accessible in open-source software ("LinkOrgs").

Dense Hebbian neural networks: a replica symmetric picture of supervised learning

We consider dense, associative neural-networks trained by a teacher (i.e., with supervision) and we investigate their computational capabilities analytically, via statistical-mechanics of spin glasses, and numerically, via Monte Carlo simulations. In particular, we obtain a phase diagram summarizing their performance as a function of the control parameters such as quality and quantity of the training dataset, network storage and noise, that is valid in the limit of large network size and structureless datasets: these networks may work in a ultra-storage regime (where they can handle a huge amount of patterns, if compared with shallow neural networks) or in a ultra-detection regime (where they can perform pattern recognition at prohibitive signal-to-noise ratios, if compared with shallow neural networks). Guided by the random theory as a reference framework, we also test numerically learning, storing and retrieval capabilities shown by these networks on structured datasets as MNist and Fashion MNist. As technical remarks, from the analytic side, we implement large deviations and stability analysis within Guerra's interpolation to tackle the not-Gaussian distributions involved in the post-synaptic potentials while, from the computational counterpart, we insert Plefka approximation in the Monte Carlo scheme, to speed up the evaluation of the synaptic tensors, overall obtaining a novel and broad approach to investigate supervised learning in neural networks, beyond the shallow limit, in general.

A Practical Approach to Novel Class Discovery in Tabular Data

The problem of Novel Class Discovery (NCD) consists in extracting knowledge from a labeled set of known classes to accurately partition an unlabeled set of novel classes. While NCD has recently received a lot of attention from the community, it is often solved on computer vision problems and under unrealistic conditions. In particular, the number of novel classes is usually assumed to be known in advance, and their labels are sometimes used to tune hyperparameters. Methods that rely on these assumptions are not applicable in real-world scenarios. In this work, we focus on solving NCD in tabular data when no prior knowledge of the novel classes is available. To this end, we propose to tune the hyperparameters of NCD methods by adapting the k-fold cross-validation process and hiding some of the known classes in each fold. Since we have found that methods with too many hyperparameters are likely to overfit these hidden classes, we define a simple deep NCD model. This method is composed of only the essential elements necessary for the NCD problem and performs impressively well under realistic conditions. Furthermore, we find that the latent space of this method can be used to reliably estimate the number of novel classes. Additionally, we adapt two unsupervised clustering algorithms (k-means and Spectral Clustering) to leverage the knowledge of the known classes. Extensive experiments are conducted on 7 tabular datasets and demonstrate the effectiveness of the proposed method and hyperparameter tuning process, and show that the NCD problem can be solved without relying on knowledge from the novel classes.

A Survey of Quantization Methods for Efficient Neural Network Inference

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

TiVy: Time Series Visual Summary for Scalable Visualization

Visualizing multiple time series presents fundamental tradeoffs between scalability and visual clarity. Time series capture the behavior of many large-scale real-world processes, from stock market trends to urban activities. Users often gain insights by visualizing them as line charts, juxtaposing or superposing multiple time series to compare them and identify trends and patterns. However, existing representations struggle with scalability: when covering long time spans, leading to visual clutter from too many small multiples or overlapping lines. We propose TiVy, a new algorithm that summarizes time series using sequential patterns. It transforms the series into a set of symbolic sequences based on subsequence visual similarity using Dynamic Time Warping (DTW), then constructs a disjoint grouping of similar subsequences based on the frequent sequential patterns. The grouping result, a visual summary of time series, provides uncluttered superposition with fewer small multiples. Unlike common clustering techniques, TiVy extracts similar subsequences (of varying lengths) aligned in time. We also present an interactive time series visualization that renders large-scale time series in real-time. Our experimental evaluation shows that our algorithm (1) extracts clear and accurate patterns when visualizing time series data, (2) achieves a significant speed-up (1000X) compared to a straightforward DTW clustering. We also demonstrate the efficiency of our approach to explore hidden structures in massive time series data in two usage scenarios.

Parallel Learning by Multitasking Neural Networks

A modern challenge of Artificial Intelligence is learning multiple patterns at once (i.e.parallel learning). While this can not be accomplished by standard Hebbian associative neural networks, in this paper we show how the Multitasking Hebbian Network (a variation on theme of the Hopfield model working on sparse data-sets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) amount of patterns, mirroring the low-storage level of standard associative neural networks at work with pattern recognition. For mild dilution in the patterns, the network handles them hierarchically, distributing the amplitudes of their signals as power-laws w.r.t. their information content (hierarchical regime), while, for strong dilution, all the signals pertaining to all the patterns are raised with the same strength (parallel regime). Further, confined to the low-storage setting (i.e., far from the spin glass limit), the presence of a teacher neither alters the multitasking performances nor changes the thresholds for learning: the latter are the same whatever the training protocol is supervised or unsupervised. Results obtained through statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting insights on multiple learning at once: for instance, whenever the cost-function of the model is minimized in parallel on several patterns (in its description via Statistical Mechanics), the same happens to the standard sum-squared error Loss function (typically used in Machine Learning).

DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving

Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.

AI-Assisted Generation of Difficult Math Questions

Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is unmet demand for diverse and challenging math questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. We leverage LLM metacognition skills [Didolkar et al., 2024] of a strong LLM to extract core "skills" from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills. The use of two different skills within each question makes finding such questions an "out of distribution" task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multiturn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from the MATH dataset [Hendrycks et al., 2021] resulted in MATH^2 - a dataset of higher-quality math questions, as evidenced by: (a) Lower performance of all models on MATH^2 than on MATH (b) Higher performance on MATH when using MATH^2 questions as in-context examples. Although focused on mathematics, our methodology seems applicable to other domains requiring structured reasoning, and potentially as a component of scalable oversight. Also of interest is a striking relationship observed between models' performance on the new dataset: the success rate on MATH^2 is the square on MATH, suggesting that successfully solving the question in MATH^2 requires a nontrivial combination of two distinct math skills.

Investigating Sparsity in Recurrent Neural Networks

In the past few years, neural networks have evolved from simple Feedforward Neural Networks to more complex neural networks, such as Convolutional Neural Networks and Recurrent Neural Networks. Where CNNs are a perfect fit for tasks where the sequence is not important such as image recognition, RNNs are useful when order is important such as machine translation. An increasing number of layers in a neural network is one way to improve its performance, but it also increases its complexity making it much more time and power-consuming to train. One way to tackle this problem is to introduce sparsity in the architecture of the neural network. Pruning is one of the many methods to make a neural network architecture sparse by clipping out weights below a certain threshold while keeping the performance near to the original. Another way is to generate arbitrary structures using random graphs and embed them between an input and output layer of an Artificial Neural Network. Many researchers in past years have focused on pruning mainly CNNs, while hardly any research is done for the same in RNNs. The same also holds in creating sparse architectures for RNNs by generating and embedding arbitrary structures. Therefore, this thesis focuses on investigating the effects of the before-mentioned two techniques on the performance of RNNs. We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed. Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure. We perform these experiments on RNN with Tanh nonlinearity (RNN-Tanh), RNN with ReLU nonlinearity (RNN-ReLU), GRU, and LSTM. Finally, we analyze and discuss the results achieved from both the experiments.

Order Matters: Sequence to sequence for sets

Sequences have become first class citizens in supervised learning thanks to the resurgence of recurrent neural networks. Many complex tasks that require mapping from or to a sequence of observations can now be formulated with the sequence-to-sequence (seq2seq) framework which employs the chain rule to efficiently represent the joint probability of sequences. In many cases, however, variable sized inputs and/or outputs might not be naturally expressed as sequences. For instance, it is not clear how to input a set of numbers into a model where the task is to sort them; similarly, we do not know how to organize outputs when they correspond to random variables and the task is to model their unknown joint probability. In this paper, we first show using various examples that the order in which we organize input and/or output data matters significantly when learning an underlying model. We then discuss an extension of the seq2seq framework that goes beyond sequences and handles input sets in a principled way. In addition, we propose a loss which, by searching over possible orders during training, deals with the lack of structure of output sets. We show empirical evidence of our claims regarding ordering, and on the modifications to the seq2seq framework on benchmark language modeling and parsing tasks, as well as two artificial tasks -- sorting numbers and estimating the joint probability of unknown graphical models.

Comparing Dataset Characteristics that Favor the Apriori, Eclat or FP-Growth Frequent Itemset Mining Algorithms

Frequent itemset mining is a popular data mining technique. Apriori, Eclat, and FP-Growth are among the most common algorithms for frequent itemset mining. Considerable research has been performed to compare the relative performance between these three algorithms, by evaluating the scalability of each algorithm as the dataset size increases. While scalability as data size increases is important, previous papers have not examined the performance impact of similarly sized datasets that contain different itemset characteristics. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm. This paper explores the effects that two dataset characteristics can have on the performance of these three frequent itemset algorithms. To perform this empirical analysis, a dataset generator is created to measure the effects of frequent item density and the maximum transaction size on performance. The generated datasets contain the same number of rows. This provides some insight into dataset characteristics that are conducive to each algorithm. The results of this paper's research demonstrate Eclat and FP-Growth both handle increases in maximum transaction size and frequent itemset density considerably better than the Apriori algorithm.

MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data

Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities. Despite these successes, most LLMs still struggle with solving mathematical problems due to the intricate reasoning required. This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset. The dataset includes diverse mathematical problems at high school and university levels, created by experts from notable institutions to rigorously test LLMs in advanced problem-solving scenarios and cover a wider range of subject areas. By providing the MathOdyssey dataset as a resource to the AI community, we aim to contribute to the understanding and improvement of AI capabilities in complex mathematical problem-solving. We conduct benchmarking on open-source models, such as Llama-3 and DBRX-Instruct, and closed-source models from the GPT series and Gemini models. Our results indicate that while LLMs perform well on routine and moderately difficult tasks, they face significant challenges with Olympiad-level problems and complex university-level questions. Our analysis shows a narrowing performance gap between open-source and closed-source models, yet substantial challenges remain, particularly with the most demanding problems. This study highlights the ongoing need for research to enhance the mathematical reasoning of LLMs. The dataset, results, and code are publicly available.

Programming Puzzles

We introduce a new type of programming challenge called programming puzzles, as an objective and comprehensive evaluation of program synthesis, and release an open-source dataset of Python Programming Puzzles (P3). Each puzzle is defined by a short Python program f, and the goal is to find an input which makes f return True. The puzzles are objective in that each one is specified entirely by the source code of its verifier f, so evaluating f is all that is needed to test a candidate solution. They do not require an answer key or input/output examples, nor do they depend on natural language understanding. The dataset is comprehensive in that it spans problems of a range of difficulties and domains, ranging from trivial string manipulation problems, to classic programming puzzles (e.g., Tower of Hanoi), to interview/competitive-programming problems (e.g., dynamic programming), to longstanding open problems in algorithms and mathematics (e.g., factoring). We develop baseline enumerative program synthesis, GPT-3 and Codex solvers that are capable of solving puzzles -- even without access to any reference solutions -- by learning from their own past solutions. Codex performs best, solving up to 18% of 397 test problems with a single try and 80% of the problems with 1,000 tries per problem. In a small user study, we find a positive correlation between puzzle-solving performance and coding experience, and between the puzzle difficulty for humans and AI solvers. Therefore, further improvements on P3 could have a significant impact on many program synthesis areas.

Between Lines of Code: Unraveling the Distinct Patterns of Machine and Human Programmers

Large language models have catalyzed an unprecedented wave in code generation. While achieving significant advances, they blur the distinctions between machine- and human-authored source code, causing integrity and authenticity issues of software artifacts. Previous methods such as DetectGPT have proven effective in discerning machine-generated texts, but they do not identify and harness the unique patterns of machine-generated code. Thus, its applicability falters when applied to code. In this paper, we carefully study the specific patterns that characterize machine- and human-authored code. Through a rigorous analysis of code attributes such as lexical diversity, conciseness, and naturalness, we expose unique patterns inherent to each source. We particularly notice that the syntactic segmentation of code is a critical factor in identifying its provenance. Based on our findings, we propose DetectCodeGPT, a novel method for detecting machine-generated code, which improves DetectGPT by capturing the distinct stylized patterns of code. Diverging from conventional techniques that depend on external LLMs for perturbations, DetectCodeGPT perturbs the code corpus by strategically inserting spaces and newlines, ensuring both efficacy and efficiency. Experiment results show that our approach significantly outperforms state-of-the-art techniques in detecting machine-generated code.