new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Apr 23

Decomposed Prompting: A Modular Approach for Solving Complex Tasks

Few-shot prompting is a surprisingly powerful way to use Large Language Models (LLMs) to solve various tasks. However, this approach struggles as the task complexity increases or when the individual reasoning steps of the task themselves are hard to learn, especially when embedded in more complex tasks. To address this, we propose Decomposed Prompting, a new approach to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks that can be delegated to a library of prompting-based LLMs dedicated to these sub-tasks. This modular structure allows each prompt to be optimized for its specific sub-task, further decomposed if necessary, and even easily replaced with more effective prompts, trained models, or symbolic functions if desired. We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting using GPT3. On symbolic reasoning tasks, we can further decompose sub-tasks that are hard for LLMs into even simpler solvable sub-tasks. When the complexity comes from the input length, we can recursively decompose the task into the same task but with smaller inputs. We also evaluate our approach on textual multi-step reasoning tasks: on long-context multi-hop QA task, we can more effectively teach the sub-tasks via our separate sub-tasks prompts; and on open-domain multi-hop QA, we can incorporate a symbolic information retrieval within our decomposition framework, leading to improved performance on both tasks. Datasets, Code and Prompts available at https://github.com/allenai/DecomP.

Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models

Large language models (LLMs) have recently been shown to deliver impressive performance in various NLP tasks. To tackle multi-step reasoning tasks, few-shot chain-of-thought (CoT) prompting includes a few manually crafted step-by-step reasoning demonstrations which enable LLMs to explicitly generate reasoning steps and improve their reasoning task accuracy. To eliminate the manual effort, Zero-shot-CoT concatenates the target problem statement with "Let's think step by step" as an input prompt to LLMs. Despite the success of Zero-shot-CoT, it still suffers from three pitfalls: calculation errors, missing-step errors, and semantic misunderstanding errors. To address the missing-step errors, we propose Plan-and-Solve (PS) Prompting. It consists of two components: first, devising a plan to divide the entire task into smaller subtasks, and then carrying out the subtasks according to the plan. To address the calculation errors and improve the quality of generated reasoning steps, we extend PS prompting with more detailed instructions and derive PS+ prompting. We evaluate our proposed prompting strategy on ten datasets across three reasoning problems. The experimental results over GPT-3 show that our proposed zero-shot prompting consistently outperforms Zero-shot-CoT across all datasets by a large margin, is comparable to or exceeds Zero-shot-Program-of-Thought Prompting, and has comparable performance with 8-shot CoT prompting on the math reasoning problem. The code can be found at https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting.

Instructing Large Language Models to Identify and Ignore Irrelevant Conditions

Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.

Large Language Models Are Human-Level Prompt Engineers

By conditioning on natural language instructions, large language models (LLMs) have displayed impressive capabilities as general-purpose computers. However, task performance depends significantly on the quality of the prompt used to steer the model, and most effective prompts have been handcrafted by humans. Inspired by classical program synthesis and the human approach to prompt engineering, we propose Automatic Prompt Engineer (APE) for automatic instruction generation and selection. In our method, we treat the instruction as the "program," optimized by searching over a pool of instruction candidates proposed by an LLM in order to maximize a chosen score function. To evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another LLM following the selected instruction. Experiments on 24 NLP tasks show that our automatically generated instructions outperform the prior LLM baseline by a large margin and achieve better or comparable performance to the instructions generated by human annotators on 19/24 tasks. We conduct extensive qualitative and quantitative analyses to explore the performance of APE. We show that APE-engineered prompts can be applied to steer models toward truthfulness and/or informativeness, as well as to improve few-shot learning performance by simply prepending them to standard in-context learning prompts. Please check out our webpage at https://sites.google.com/view/automatic-prompt-engineer.

Leveraging Training Data in Few-Shot Prompting for Numerical Reasoning

Chain-of-thought (CoT) prompting with large language models has proven effective in numerous natural language processing tasks, but designing prompts that generalize well to diverse problem types can be challenging, especially in the context of math word problem (MWP) solving. Additionally, it is common to have a large amount of training data that have a better diversity coverage but CoT annotations are not available, which limits the use of supervised learning techniques. To address these issues, we investigate two approaches to leverage the training data in a few-shot prompting scenario: dynamic program prompting and program distillation. Our approach is largely inspired by Gao et al., (2022), where they proposed to replace the CoT with the programs as the intermediate reasoning step. Such a prompting strategy allows us to accurately verify the answer correctness through program execution in MWP solving. Our dynamic program prompting involves annotating the training data by sampling correct programs from a large language model, while program distillation involves adapting a smaller model to the program-annotated training data. Our experiments on three standard MWP datasets demonstrate the effectiveness of these approaches, yielding significant improvements over previous baselines for prompting and fine-tuning. Our results suggest that leveraging a large amount of training data can improve the generalization ability of prompts and boost the performance of fine-tuned small models in MWP solving.

Instance Needs More Care: Rewriting Prompts for Instances Yields Better Zero-Shot Performance

Enabling large language models (LLMs) to perform tasks in zero-shot has been an appealing goal owing to its labor-saving (i.e., requiring no task-specific annotations); as such, zero-shot prompting approaches also enjoy better task generalizability. To improve LLMs' zero-shot performance, prior work has focused on devising more effective task instructions (e.g., ``let's think step by step'' ). However, we argue that, in order for an LLM to solve them correctly in zero-shot, individual test instances need more carefully designed and customized instructions. To this end, we propose PRoMPTd, an approach that rewrites the task prompt for each individual test input to be more specific, unambiguous, and complete, so as to provide better guidance to the task LLM. We evaluated PRoMPTd on eight datasets covering tasks including arithmetics, logical reasoning, and code generation, using GPT-4 as the task LLM. Notably, PRoMPTd achieves an absolute improvement of around 10% on the complex MATH dataset and 5% on the code generation task on HumanEval, outperforming conventional zero-shot methods. In addition, we also showed that the rewritten prompt can provide better interpretability of how the LLM resolves each test instance, which can potentially be leveraged as a defense mechanism against adversarial prompting. The source code and dataset can be obtained from https://github.com/salokr/PRoMPTd

What Do You Want? User-centric Prompt Generation for Text-to-image Synthesis via Multi-turn Guidance

The emergence of text-to-image synthesis (TIS) models has significantly influenced digital image creation by producing high-quality visuals from written descriptions. Yet these models heavily rely on the quality and specificity of textual prompts, posing a challenge for novice users who may not be familiar with TIS-model-preferred prompt writing. Existing solutions relieve this via automatic model-preferred prompt generation from user queries. However, this single-turn manner suffers from limited user-centricity in terms of result interpretability and user interactivity. To address these issues, we propose DialPrompt, a multi-turn dialogue-based TIS prompt generation model that emphasises user-centricity. DialPrompt is designed to follow a multi-turn guidance workflow, where in each round of dialogue the model queries user with their preferences on possible optimization dimensions before generating the final TIS prompt. To achieve this, we mined 15 essential dimensions for high-quality prompts from advanced users and curated a multi-turn dataset. Through training on this dataset, DialPrompt can improve interpretability by allowing users to understand the correlation between specific phrases and image attributes. Additionally, it enables greater user control and engagement in the prompt generation process, leading to more personalized and visually satisfying outputs. Experiments indicate that DialPrompt achieves a competitive result in the quality of synthesized images, outperforming existing prompt engineering approaches by 5.7%. Furthermore, in our user evaluation, DialPrompt outperforms existing approaches by 46.5% in user-centricity score and is rated 7.9/10 by 19 human reviewers.

Think Beyond Size: Adaptive Prompting for More Effective Reasoning

Pretrained large language models (LLMs) are increasingly utilized across a wide range of natural language processing (NLP) tasks due to their impressive capabilities as few-shot learners. Recent techniques, such as chain-of-thought (CoT) prompting, have significantly advanced multi-step reasoning by introducing step-by-step decomposition, achieving state-of-the-art results on complex reasoning benchmarks. However, these approaches often rely on static prompting templates that do not adapt to task complexity or errors during the reasoning process. In this work, we introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.Experimental results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArith), logical reasoning and commonsense tasks, achieving substantial accuracy gains compared to static prompting baselines. By integrating guided prompts, intermediate validation, and self-corrective steps, our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency. The framework achieves this without requiring fine-tuning or task-specific training data, highlighting the untapped potential of iterative reasoning methods.

GREATERPROMPT: A Unified, Customizable, and High-Performing Open-Source Toolkit for Prompt Optimization

LLMs have gained immense popularity among researchers and the general public for its impressive capabilities on a variety of tasks. Notably, the efficacy of LLMs remains significantly dependent on the quality and structure of the input prompts, making prompt design a critical factor for their performance. Recent advancements in automated prompt optimization have introduced diverse techniques that automatically enhance prompts to better align model outputs with user expectations. However, these methods often suffer from the lack of standardization and compatibility across different techniques, limited flexibility in customization, inconsistent performance across model scales, and they often exclusively rely on expensive proprietary LLM APIs. To fill in this gap, we introduce GREATERPROMPT, a novel framework that democratizes prompt optimization by unifying diverse methods under a unified, customizable API while delivering highly effective prompts for different tasks. Our framework flexibly accommodates various model scales by leveraging both text feedback-based optimization for larger LLMs and internal gradient-based optimization for smaller models to achieve powerful and precise prompt improvements. Moreover, we provide a user-friendly Web UI that ensures accessibility for non-expert users, enabling broader adoption and enhanced performance across various user groups and application scenarios. GREATERPROMPT is available at https://github.com/psunlpgroup/GreaterPrompt via GitHub, PyPI, and web user interfaces.

Self-regulating Prompts: Foundational Model Adaptation without Forgetting

Prompt learning has emerged as an efficient alternative for fine-tuning foundational models, such as CLIP, for various downstream tasks. Conventionally trained using the task-specific objective, i.e., cross-entropy loss, prompts tend to overfit downstream data distributions and find it challenging to capture task-agnostic general features from the frozen CLIP. This leads to the loss of the model's original generalization capability. To address this issue, our work introduces a self-regularization framework for prompting called PromptSRC (Prompting with Self-regulating Constraints). PromptSRC guides the prompts to optimize for both task-specific and task-agnostic general representations using a three-pronged approach by: (a) regulating prompted representations via mutual agreement maximization with the frozen model, (b) regulating with self-ensemble of prompts over the training trajectory to encode their complementary strengths, and (c) regulating with textual diversity to mitigate sample diversity imbalance with the visual branch. To the best of our knowledge, this is the first regularization framework for prompt learning that avoids overfitting by jointly attending to pre-trained model features, the training trajectory during prompting, and the textual diversity. PromptSRC explicitly steers the prompts to learn a representation space that maximizes performance on downstream tasks without compromising CLIP generalization. We perform extensive experiments on 4 benchmarks where PromptSRC overall performs favorably well compared to the existing methods. Our code and pre-trained models are publicly available at: https://github.com/muzairkhattak/PromptSRC.

Tool Documentation Enables Zero-Shot Tool-Usage with Large Language Models

Today, large language models (LLMs) are taught to use new tools by providing a few demonstrations of the tool's usage. Unfortunately, demonstrations are hard to acquire, and can result in undesirable biased usage if the wrong demonstration is chosen. Even in the rare scenario that demonstrations are readily available, there is no principled selection protocol to determine how many and which ones to provide. As tasks grow more complex, the selection search grows combinatorially and invariably becomes intractable. Our work provides an alternative to demonstrations: tool documentation. We advocate the use of tool documentation, descriptions for the individual tool usage, over demonstrations. We substantiate our claim through three main empirical findings on 6 tasks across both vision and language modalities. First, on existing benchmarks, zero-shot prompts with only tool documentation are sufficient for eliciting proper tool usage, achieving performance on par with few-shot prompts. Second, on a newly collected realistic tool-use dataset with hundreds of available tool APIs, we show that tool documentation is significantly more valuable than demonstrations, with zero-shot documentation significantly outperforming few-shot without documentation. Third, we highlight the benefits of tool documentations by tackling image generation and video tracking using just-released unseen state-of-the-art models as tools. Finally, we highlight the possibility of using tool documentation to automatically enable new applications: by using nothing more than the documentation of GroundingDino, Stable Diffusion, XMem, and SAM, LLMs can re-invent the functionalities of the just-released Grounded-SAM and Track Anything models.

Exploring Small Language Models with Prompt-Learning Paradigm for Efficient Domain-Specific Text Classification

Domain-specific text classification faces the challenge of scarce labeled data due to the high cost of manual labeling. Prompt-learning, known for its efficiency in few-shot scenarios, is proposed as an alternative to traditional fine-tuning methods. And besides, although large language models (LLMs) have gained prominence, small language models (SLMs, with under 1B parameters) offer significant customizability, adaptability, and cost-effectiveness for domain-specific tasks, given industry constraints. In this study, we investigate the potential of SLMs combined with prompt-learning paradigm for domain-specific text classification, specifically within customer-agent interactions in retail. Our evaluations show that, in few-shot settings when prompt-based model fine-tuning is possible, T5-base, a typical SLM with 220M parameters, achieve approximately 75% accuracy with limited labeled data (up to 15% of full data), which shows great potentials of SLMs with prompt-learning. Based on this, We further validate the effectiveness of active few-shot sampling and the ensemble strategy in the prompt-learning pipeline that contribute to a remarkable performance gain. Besides, in zero-shot settings with a fixed model, we underscore a pivotal observation that, although the GPT-3.5-turbo equipped with around 154B parameters garners an accuracy of 55.16%, the power of well designed prompts becomes evident when the FLAN-T5-large, a model with a mere 0.5% of GPT-3.5-turbo's parameters, achieves an accuracy exceeding 31% with the optimized prompt, a leap from its sub-18% performance with an unoptimized one. Our findings underscore the promise of prompt-learning in classification tasks with SLMs, emphasizing the benefits of active few-shot sampling, and ensemble strategies in few-shot settings, and the importance of prompt engineering in zero-shot settings.

PromptMix: A Class Boundary Augmentation Method for Large Language Model Distillation

Data augmentation is a widely used technique to address the problem of text classification when there is a limited amount of training data. Recent work often tackles this problem using large language models (LLMs) like GPT3 that can generate new examples given already available ones. In this work, we propose a method to generate more helpful augmented data by utilizing the LLM's abilities to follow instructions and perform few-shot classifications. Our specific PromptMix method consists of two steps: 1) generate challenging text augmentations near class boundaries; however, generating borderline examples increases the risk of false positives in the dataset, so we 2) relabel the text augmentations using a prompting-based LLM classifier to enhance the correctness of labels in the generated data. We evaluate the proposed method in challenging 2-shot and zero-shot settings on four text classification datasets: Banking77, TREC6, Subjectivity (SUBJ), and Twitter Complaints. Our experiments show that generating and, crucially, relabeling borderline examples facilitates the transfer of knowledge of a massive LLM like GPT3.5-turbo into smaller and cheaper classifiers like DistilBERT_{base} and BERT_{base}. Furthermore, 2-shot PromptMix outperforms multiple 5-shot data augmentation methods on the four datasets. Our code is available at https://github.com/ServiceNow/PromptMix-EMNLP-2023.

Meta Prompting for AGI Systems

This paper presents an in-depth exploration of Meta Prompting, a novel technique that revolutionizes the way large language models (LLMs), multi-modal foundation models, and AI systems approach problem-solving and data interpretation. Meta Prompting, rooted in type theory and category theory, prioritizes the structure and syntax of information, providing a unique framework that transcends traditional content-focused methods. We delve into the formal definitions of Meta Prompting, contrasting it with Few-Shot Prompting, and highlight its applicability and superiority in various AI applications. Key to this exploration is the expansion of Meta Prompting into the realm of complex reasoning. Here, we demonstrate how this technique adeptly breaks down intricate problems into manageable sub-problems, facilitating a step-by-step, detailed approach to problem-solving. This method proves especially advantageous in terms of token efficiency and offering a fair comparison in problem-solving scenarios, standing out against few-shot example approaches. Furthermore, the paper breaks new ground by extending Meta Prompting into multi-modal foundation model settings. This extension addresses the integration of diverse data types, such as images, audio, and video, within the structured framework of Meta Prompting, highlighting both the challenges and the vast potential of this approach in handling complex, multi-faceted data (The code is available at https://github.com/meta-prompting/meta-prompting).

Understanding prompt engineering may not require rethinking generalization

Zero-shot learning in prompted vision-language models, the practice of crafting prompts to build classifiers without an explicit training process, has achieved impressive performance in many settings. This success presents a seemingly surprising observation: these methods suffer relatively little from overfitting, i.e., when a prompt is manually engineered to achieve low error on a given training set (thus rendering the method no longer actually zero-shot), the approach still performs well on held-out test data. In this paper, we show that we can explain such performance well via recourse to classical PAC-Bayes bounds. Specifically, we show that the discrete nature of prompts, combined with a PAC-Bayes prior given by a language model, results in generalization bounds that are remarkably tight by the standards of the literature: for instance, the generalization bound of an ImageNet classifier is often within a few percentage points of the true test error. We demonstrate empirically that this holds for existing handcrafted prompts and prompts generated through simple greedy search. Furthermore, the resulting bound is well-suited for model selection: the models with the best bound typically also have the best test performance. This work thus provides a possible justification for the widespread practice of prompt engineering, even if it seems that such methods could potentially overfit the training data.

Mixture of Prompt Learning for Vision Language Models

As powerful pre-trained vision-language models (VLMs) like CLIP gain prominence, numerous studies have attempted to combine VLMs for downstream tasks. Among these, prompt learning has been validated as an effective method for adapting to new tasks, which only requiring a small number of parameters. However, current prompt learning methods face two challenges: first, a single soft prompt struggles to capture the diverse styles and patterns within a dataset; second, fine-tuning soft prompts is prone to overfitting. To address these challenges, we propose a mixture of soft prompt learning method incorporating a routing module. This module is able to capture a dataset's varied styles and dynamically selects the most suitable prompts for each instance. Additionally, we introduce a novel gating mechanism to ensure the router selects prompts based on their similarity to hard prompt templates, which both retaining knowledge from hard prompts and improving selection accuracy. We also implement semantically grouped text-level supervision, initializing each soft prompt with the token embeddings of manually designed templates from its group and applied a contrastive loss between the resulted text feature and hard prompt encoded text feature. This supervision ensures that the text features derived from soft prompts remain close to those from their corresponding hard prompts, preserving initial knowledge and mitigating overfitting. Our method has been validated on 11 datasets, demonstrating evident improvements in few-shot learning, domain generalization, and base-to-new generalization scenarios compared to existing baselines. The code will be available at https://anonymous.4open.science/r/mocoop-6387

A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications

Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.

Enhancing Multi-hop Reasoning in Vision-Language Models via Self-Distillation with Multi-Prompt Ensembling

Multi-modal large language models have seen rapid advancement alongside large language models. However, while language models can effectively leverage chain-of-thought prompting for zero or few-shot learning, similar prompting strategies are less effective for multi-modal LLMs due to modality gaps and task complexity. To address this challenge, we explore two prompting approaches: a dual-query method that separates multi-modal input analysis and answer generation into two prompting steps, and an ensemble prompting method that combines multiple prompt variations to arrive at the final answer. Although these approaches enhance the model's reasoning capabilities without fine-tuning, they introduce significant inference overhead. Therefore, building on top of these two prompting techniques, we propose a self-distillation framework such that the model can improve itself without any annotated data. Our self-distillation framework learns representation intervention modules from the reasoning traces collected from ensembled dual-query prompts, in the form of hidden representations. The lightweight intervention modules operate in parallel with the frozen original model, which makes it possible to maintain computational efficiency while significantly improving model capability. We evaluate our method on five widely-used VQA benchmarks, demonstrating its effectiveness in performing multi-hop reasoning for complex tasks.

Guiding Large Language Models via Directional Stimulus Prompting

We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs. Instead of directly adjusting LLMs, our method employs a small tunable policy model (e.g., T5) to generate an auxiliary directional stimulus prompt for each input instance. These directional stimulus prompts act as nuanced, instance-specific hints and clues to guide LLMs in generating desired outcomes, such as including specific keywords in the generated summary. Our approach sidesteps the challenges of direct LLM tuning by optimizing the policy model to explore directional stimulus prompts that align LLMs with desired behaviors. The policy model can be optimized through 1) supervised fine-tuning using labeled data and 2) reinforcement learning from offline or online rewards based on the LLM's output. We assess our method across summarization, dialogue response generation, and chain-of-thought reasoning tasks. Our experiments demonstrate that the framework consistently improves LLMs' (e.g., ChatGPT, Codex, InstructGPT) performance on these supervised tasks using minimal labeled data. Notably, using just 80 dialogues on the MultiWOZ dataset, our approach enhances ChatGPT's performance by an impressive 41.4%, matching or surpassing some fully supervised start-of-the-art models. Additionally, the instance-specific chain-of-thought prompt generated by our approach improves InstructGPT's reasoning accuracy compared to human-crafted or automatically generated prompts. The code and data are publicly available at https://github.com/Leezekun/Directional-Stimulus-Prompting.

Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting

As large language models (LLMs) are adopted as a fundamental component of language technologies, it is crucial to accurately characterize their performance. Because choices in prompt design can strongly influence model behavior, this design process is critical in effectively using any modern pre-trained generative language model. In this work, we focus on LLM sensitivity to a quintessential class of meaning-preserving design choices: prompt formatting. We find that several widely used open-source LLMs are extremely sensitive to subtle changes in prompt formatting in few-shot settings, with performance differences of up to 76 accuracy points when evaluated using LLaMA-2-13B. Sensitivity remains even when increasing model size, the number of few-shot examples, or performing instruction tuning. Our analysis suggests that work evaluating LLMs with prompting-based methods would benefit from reporting a range of performance across plausible prompt formats, instead of the currently-standard practice of reporting performance on a single format. We also show that format performance only weakly correlates between models, which puts into question the methodological validity of comparing models with an arbitrarily chosen, fixed prompt format. To facilitate systematic analysis we propose FormatSpread, an algorithm that rapidly evaluates a sampled set of plausible prompt formats for a given task, and reports the interval of expected performance without accessing model weights. Furthermore, we present a suite of analyses that characterize the nature of this sensitivity, including exploring the influence of particular atomic perturbations and the internal representation of particular formats.

Prompt Engineering a Prompt Engineer

Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.

Large Language Models are Zero-Shot Reasoners

Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-by-step answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding "Let's think step by step" before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g. increasing the accuracy on MultiArith from 17.7% to 78.7% and GSM8K from 10.4% to 40.7% with large InstructGPT model (text-davinci-002), as well as similar magnitudes of improvements with another off-the-shelf large model, 540B parameter PaLM. The versatility of this single prompt across very diverse reasoning tasks hints at untapped and understudied fundamental zero-shot capabilities of LLMs, suggesting high-level, multi-task broad cognitive capabilities may be extracted by simple prompting. We hope our work not only serves as the minimal strongest zero-shot baseline for the challenging reasoning benchmarks, but also highlights the importance of carefully exploring and analyzing the enormous zero-shot knowledge hidden inside LLMs before crafting finetuning datasets or few-shot exemplars.

Meta-Prompting: Enhancing Language Models with Task-Agnostic Scaffolding

We introduce meta-prompting, an effective scaffolding technique designed to enhance the functionality of language models (LMs). This approach transforms a single LM into a multi-faceted conductor, adept at managing and integrating multiple independent LM queries. By employing high-level instructions, meta-prompting guides the LM to break down complex tasks into smaller, more manageable subtasks. These subtasks are then handled by distinct "expert" instances of the same LM, each operating under specific, tailored instructions. Central to this process is the LM itself, in its role as the conductor, which ensures seamless communication and effective integration of the outputs from these expert models. It additionally employs its inherent critical thinking and robust verification processes to refine and authenticate the end result. This collaborative prompting approach empowers a single LM to simultaneously act as a comprehensive orchestrator and a panel of diverse experts, significantly enhancing its performance across a wide array of tasks. The zero-shot, task-agnostic nature of meta-prompting greatly simplifies user interaction by obviating the need for detailed, task-specific instructions. Furthermore, our research demonstrates the seamless integration of external tools, such as a Python interpreter, into the meta-prompting framework, thereby broadening its applicability and utility. Through rigorous experimentation with GPT-4, we establish the superiority of meta-prompting over conventional scaffolding methods: When averaged across all tasks, including the Game of 24, Checkmate-in-One, and Python Programming Puzzles, meta-prompting, augmented with a Python interpreter functionality, surpasses standard prompting by 17.1%, expert (dynamic) prompting by 17.3%, and multipersona prompting by 15.2%.

A User-Friendly Framework for Generating Model-Preferred Prompts in Text-to-Image Synthesis

Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images. Although existing prompt engineering methods can provide high-level guidance, it is challenging for novice users to achieve the desired results by manually entering prompts due to a discrepancy between novice-user-input prompts and the model-preferred prompts. To bridge the distribution gap between user input behavior and model training datasets, we first construct a novel Coarse-Fine Granularity Prompts dataset (CFP) and propose a novel User-Friendly Fine-Grained Text Generation framework (UF-FGTG) for automated prompt optimization. For CFP, we construct a novel dataset for text-to-image tasks that combines coarse and fine-grained prompts to facilitate the development of automated prompt generation methods. For UF-FGTG, we propose a novel framework that automatically translates user-input prompts into model-preferred prompts. Specifically, we propose a prompt refiner that continually rewrites prompts to empower users to select results that align with their unique needs. Meanwhile, we integrate image-related loss functions from the text-to-image model into the training process of text generation to generate model-preferred prompts. Additionally, we propose an adaptive feature extraction module to ensure diversity in the generated results. Experiments demonstrate that our approach is capable of generating more visually appealing and diverse images than previous state-of-the-art methods, achieving an average improvement of 5% across six quality and aesthetic metrics.

Few-Shot Cross-Lingual Transfer for Prompting Large Language Models in Low-Resource Languages

Large pre-trained language models (PLMs) are at the forefront of advances in Natural Language Processing. One widespread use case of PLMs is "prompting" - or in-context learning - where a user provides a description of a task and some completed examples of the task to a PLM as context before prompting the PLM to perform the task on a new example. Only the largest, most capable PLMs are able to perform in-context learning effectively, and these models are typically trained with a predominantly English corpus, leaving all other languages behind. The data limitations in most languages preclude the training of language-specific PLMs capable of prompting. Albeit the surge in work of prompting settings, it is still unclear how PLMs should be adapted cross-lingually specifically for prompting. We evaluate the possible methods to adapt LLaMa, a 7B parameter open-source PLM mainly trained in English, for prompting in low-resource languages, namely for Kinyarwanda, Hausa, and Luganda. We consider three methods: few-shot prompting (prompt), language-adaptive fine-tuning (LAFT), and neural machine translation (translate), and evaluate on abstractive summarization, multi-class topic classification, and named-entity recognition. Although LAFT carries the greatest compute cost and intuitively should lead to the best results, our experiments exhibit that LAFT is only occasionally the optimal choice for adapting PLMs for prompting. Rather, the translate and prompt settings are a compute-efficient and cost-effective method of few-shot prompting for the selected low-resource languages. We find that the results are task and language dependent but find that the prompting method is the best on average across all tasks and languages. Results show that the prompt setting performs better than both translating and LAFT with statistical significance for all shots when aggregated across all tasks and languages.

Generative Query Reformulation Using Ensemble Prompting, Document Fusion, and Relevance Feedback

Query Reformulation (QR) is a set of techniques used to transform a user's original search query to a text that better aligns with the user's intent and improves their search experience. Recently, zero-shot QR has been a promising approach due to its ability to exploit knowledge inherent in large language models. Inspired by the success of ensemble prompting strategies which have benefited other tasks, we investigate if they can improve query reformulation. In this context, we propose two ensemble-based prompting techniques, GenQREnsemble and GenQRFusion which leverage paraphrases of a zero-shot instruction to generate multiple sets of keywords to improve retrieval performance ultimately. We further introduce their post-retrieval variants to incorporate relevance feedback from a variety of sources, including an oracle simulating a human user and a "critic" LLM. We demonstrate that an ensemble of query reformulations can improve retrieval effectiveness by up to 18% on nDCG@10 in pre-retrieval settings and 9% on post-retrieval settings on multiple benchmarks, outperforming all previously reported SOTA results. We perform subsequent analyses to investigate the effects of feedback documents, incorporate domain-specific instructions, filter reformulations, and generate fluent reformulations that might be more beneficial to human searchers. Together, the techniques and the results presented in this paper establish a new state of the art in automated query reformulation for retrieval and suggest promising directions for future research.

R^3 Prompting: Review, Rephrase and Resolve for Chain-of-Thought Reasoning in Large Language Models under Noisy Context

With the help of Chain-of-Thought (CoT) prompting, Large Language Models (LLMs) have achieved remarkable performance on various reasoning tasks. However, most of them have been evaluated under noise-free context and the dilemma for LLMs to produce inaccurate results under the noisy context has not been fully investigated. Existing studies utilize trigger sentences to encourage LLMs to concentrate on the relevant information but the trigger has limited effect on final answer prediction. Inspired by interactive CoT method, where intermediate reasoning steps are promoted by multiple rounds of interaction between users and LLMs, we propose a novel prompting method, namely R^3 prompting, for CoT reasoning under noisy context. Specifically, R^3 prompting interacts with LLMs to perform key sentence extraction, variable declaration and answer prediction, which corresponds to a thought process of reviewing, rephrasing and resolving. The responses generated at the last interaction will perform as hints to guide toward the responses of the next interaction. Our experiments show that R^3 prompting significantly outperforms existing CoT prompting methods on five reasoning tasks under noisy context. With GPT-3.5-turbo, we observe 3.7% accuracy improvement on average on the reasoning tasks under noisy context compared to the most competitive prompting baseline. More analyses and ablation studies show the robustness and generalization of R^3 prompting method in solving reasoning tasks in LLMs under noisy context.

From Medprompt to o1: Exploration of Run-Time Strategies for Medical Challenge Problems and Beyond

Run-time steering strategies like Medprompt are valuable for guiding large language models (LLMs) to top performance on challenging tasks. Medprompt demonstrates that a general LLM can be focused to deliver state-of-the-art performance on specialized domains like medicine by using a prompt to elicit a run-time strategy involving chain of thought reasoning and ensembling. OpenAI's o1-preview model represents a new paradigm, where a model is designed to do run-time reasoning before generating final responses. We seek to understand the behavior of o1-preview on a diverse set of medical challenge problem benchmarks. Following on the Medprompt study with GPT-4, we systematically evaluate the o1-preview model across various medical benchmarks. Notably, even without prompting techniques, o1-preview largely outperforms the GPT-4 series with Medprompt. We further systematically study the efficacy of classic prompt engineering strategies, as represented by Medprompt, within the new paradigm of reasoning models. We found that few-shot prompting hinders o1's performance, suggesting that in-context learning may no longer be an effective steering approach for reasoning-native models. While ensembling remains viable, it is resource-intensive and requires careful cost-performance optimization. Our cost and accuracy analysis across run-time strategies reveals a Pareto frontier, with GPT-4o representing a more affordable option and o1-preview achieving state-of-the-art performance at higher cost. Although o1-preview offers top performance, GPT-4o with steering strategies like Medprompt retains value in specific contexts. Moreover, we note that the o1-preview model has reached near-saturation on many existing medical benchmarks, underscoring the need for new, challenging benchmarks. We close with reflections on general directions for inference-time computation with LLMs.

Prompt Engineering or Fine Tuning: An Empirical Assessment of Large Language Models in Automated Software Engineering Tasks

In this paper, we investigate the effectiveness of state-of-the-art LLM, i.e., GPT-4, with three different prompting engineering techniques (i.e., basic prompting, in-context learning, and task-specific prompting) against 18 fine-tuned LLMs on three typical ASE tasks, i.e., code generation, code summarization, and code translation. Our quantitative analysis of these prompting strategies suggests that prompt engineering GPT-4 cannot necessarily and significantly outperform fine-tuning smaller/older LLMs in all three tasks. For comment generation, GPT-4 with the best prompting strategy (i.e., task-specific prompt) had outperformed the first-ranked fine-tuned model by 8.33% points on average in BLEU. However, for code generation, the first-ranked fine-tuned model outperforms GPT-4 with best prompting by 16.61% and 28.3% points, on average in BLEU. For code translation, GPT-4 and fine-tuned baselines tie as they outperform each other on different translation tasks. To explore the impact of different prompting strategies, we conducted a user study with 27 graduate students and 10 industry practitioners. From our qualitative analysis, we find that the GPT-4 with conversational prompts (i.e., when a human provides feedback and instructions back and forth with a model to achieve best results) showed drastic improvement compared to GPT-4 with automatic prompting strategies. Moreover, we observe that participants tend to request improvements, add more context, or give specific instructions as conversational prompts, which goes beyond typical and generic prompting strategies. Our study suggests that, at its current state, GPT-4 with conversational prompting has great potential for ASE tasks, but fully automated prompt engineering with no human in the loop requires more study and improvement.

"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing

Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.

Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models

Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.

FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation

Most large language models (LLMs) are trained once and never updated; thus, they lack the ability to dynamically adapt to our ever-changing world. In this work, we perform a detailed study of the factuality of LLM-generated text in the context of answering questions that test current world knowledge. Specifically, we introduce FreshQA, a novel dynamic QA benchmark encompassing a diverse range of question and answer types, including questions that require fast-changing world knowledge as well as questions with false premises that need to be debunked. We benchmark a diverse array of both closed and open-source LLMs under a two-mode evaluation procedure that allows us to measure both correctness and hallucination. Through human evaluations involving more than 50K judgments, we shed light on limitations of these models and demonstrate significant room for improvement: for instance, all models (regardless of model size) struggle on questions that involve fast-changing knowledge and false premises. Motivated by these results, we present FreshPrompt, a simple few-shot prompting method that substantially boosts the performance of an LLM on FreshQA by incorporating relevant and up-to-date information retrieved from a search engine into the prompt. Our experiments show that FreshPrompt outperforms both competing search engine-augmented prompting methods such as Self-Ask (Press et al., 2022) as well as commercial systems such as Perplexity.AI. Further analysis of FreshPrompt reveals that both the number of retrieved evidences and their order play a key role in influencing the correctness of LLM-generated answers. Additionally, instructing the LLM to generate concise and direct answers helps reduce hallucination compared to encouraging more verbose answers. To facilitate future work, we release FreshQA at github.com/freshllms/freshqa and commit to updating it at regular intervals.

Can Few-shot Work in Long-Context? Recycling the Context to Generate Demonstrations

Despite recent advancements in Large Language Models (LLMs), their performance on tasks involving long contexts remains sub-optimal. In-Context Learning (ICL) with few-shot examples may be an appealing solution to enhance LLM performance in this scenario; However, naively adding ICL examples with long context introduces challenges, including substantial token overhead added for each few-shot example and context mismatch between the demonstrations and the target query. In this work, we propose to automatically generate few-shot examples for long context QA tasks by recycling contexts. Specifically, given a long input context (1-3k tokens) and a query, we generate additional query-output pairs from the given context as few-shot examples, while introducing the context only once. This ensures that the demonstrations are leveraging the same context as the target query while only adding a small number of tokens to the prompt. We further enhance each demonstration by instructing the model to explicitly identify the relevant paragraphs before the answer, which improves performance while providing fine-grained attribution to the answer source. We apply our method on multiple LLMs and obtain substantial improvements (+23\% on average across models) on various QA datasets with long context, especially when the answer lies within the middle of the context. Surprisingly, despite introducing only single-hop ICL examples, LLMs also successfully generalize to multi-hop long-context QA using our approach.

Prompt-A-Video: Prompt Your Video Diffusion Model via Preference-Aligned LLM

Text-to-video models have made remarkable advancements through optimization on high-quality text-video pairs, where the textual prompts play a pivotal role in determining quality of output videos. However, achieving the desired output often entails multiple revisions and iterative inference to refine user-provided prompts. Current automatic methods for refining prompts encounter challenges such as Modality-Inconsistency, Cost-Discrepancy, and Model-Unaware when applied to text-to-video diffusion models. To address these problem, we introduce an LLM-based prompt adaptation framework, termed as Prompt-A-Video, which excels in crafting Video-Centric, Labor-Free and Preference-Aligned prompts tailored to specific video diffusion model. Our approach involves a meticulously crafted two-stage optimization and alignment system. Initially, we conduct a reward-guided prompt evolution pipeline to automatically create optimal prompts pool and leverage them for supervised fine-tuning (SFT) of the LLM. Then multi-dimensional rewards are employed to generate pairwise data for the SFT model, followed by the direct preference optimization (DPO) algorithm to further facilitate preference alignment. Through extensive experimentation and comparative analyses, we validate the effectiveness of Prompt-A-Video across diverse generation models, highlighting its potential to push the boundaries of video generation.

PRE: Vision-Language Prompt Learning with Reparameterization Encoder

Large pre-trained vision-language models such as CLIP have demonstrated great potential in zero-shot transferability to downstream tasks. However, to attain optimal performance, the manual selection of prompts is necessary to improve alignment between the downstream image distribution and the textual class descriptions. This manual prompt engineering is the major challenge for deploying such models in practice since it requires domain expertise and is extremely time-consuming. To avoid non-trivial prompt engineering, recent work Context Optimization (CoOp) introduced the concept of prompt learning to the vision domain using learnable textual tokens. While CoOp can achieve substantial improvements over manual prompts, its learned context is worse generalizable to wider unseen classes within the same dataset. In this work, we present Prompt Learning with Reparameterization Encoder (PRE) - a simple and efficient method that enhances the generalization ability of the learnable prompt to unseen classes while maintaining the capacity to learn Base classes. Instead of directly optimizing the prompts, PRE employs a prompt encoder to reparameterize the input prompt embeddings, enhancing the exploration of task-specific knowledge from few-shot samples. Experiments and extensive ablation studies on 8 benchmarks demonstrate that our approach is an efficient method for prompt learning. Specifically, PRE achieves a notable enhancement of 5.60% in average accuracy on New classes and 3% in Harmonic mean compared to CoOp in the 16-shot setting, all achieved within a good training time.

POSIX: A Prompt Sensitivity Index For Large Language Models

Despite their remarkable capabilities, Large Language Models (LLMs) are found to be surprisingly sensitive to minor variations in prompts, often generating significantly divergent outputs in response to minor variations in the prompts, such as spelling errors, alteration of wording or the prompt template. However, while assessing the quality of an LLM, the focus often tends to be solely on its performance on downstream tasks, while very little to no attention is paid to prompt sensitivity. To fill this gap, we propose POSIX - a novel PrOmpt Sensitivity IndeX as a reliable measure of prompt sensitivity, thereby offering a more comprehensive evaluation of LLM performance. The key idea behind POSIX is to capture the relative change in loglikelihood of a given response upon replacing the corresponding prompt with a different intent-preserving prompt. We provide thorough empirical evidence demonstrating the efficacy of POSIX in capturing prompt sensitivity and subsequently use it to measure and thereby compare prompt sensitivity of various open-source LLMs. We find that merely increasing the parameter count or instruction tuning does not necessarily reduce prompt sensitivity whereas adding some few-shot exemplars, even just one, almost always leads to significant decrease in prompt sensitivity. We also find that alterations to prompt template lead to the highest sensitivity in the case of MCQ type tasks, whereas paraphrasing results in the highest sensitivity in open-ended generation tasks. The code for reproducing our results is open-sourced at https://github.com/kowndinya-renduchintala/POSIX.

GROVE: A Retrieval-augmented Complex Story Generation Framework with A Forest of Evidence

Conditional story generation is significant in human-machine interaction, particularly in producing stories with complex plots. While Large language models (LLMs) perform well on multiple NLP tasks, including story generation, it is challenging to generate stories with both complex and creative plots. Existing methods often rely on detailed prompts to guide LLMs to meet target conditions, which inadvertently restrict the creative potential of the generated stories. We argue that leveraging information from exemplary human-written stories facilitates generating more diverse plotlines. Delving deeper into story details helps build complex and credible plots. In this paper, we propose a retrieval-auGmented stoRy generation framework with a fOrest of eVidEnce (GROVE) to enhance stories' complexity. We build a retrieval repository for target conditions to produce few-shot examples to prompt LLMs. Additionally, we design an ``asking-why'' prompting scheme that extracts a forest of evidence, providing compensation for the ambiguities that may occur in the generated story. This iterative process uncovers underlying story backgrounds. Finally, we select the most fitting chains of evidence from the evidence forest and integrate them into the generated story, thereby enhancing the narrative's complexity and credibility. Experimental results and numerous examples verify the effectiveness of our method.

Hierarchical Prompting Taxonomy: A Universal Evaluation Framework for Large Language Models

Assessing the effectiveness of large language models (LLMs) in addressing diverse tasks is essential for comprehending their strengths and weaknesses. Conventional evaluation techniques typically apply a single prompting strategy uniformly across datasets, not considering the varying degrees of task complexity. We introduce the Hierarchical Prompting Taxonomy (HPT), a taxonomy that employs a Hierarchical Prompt Framework (HPF) composed of five unique prompting strategies, arranged from the simplest to the most complex, to assess LLMs more precisely and to offer a clearer perspective. This taxonomy assigns a score, called the Hierarchical Prompting Score (HP-Score), to datasets as well as LLMs based on the rules of the taxonomy, providing a nuanced understanding of their ability to solve diverse tasks and offering a universal measure of task complexity. Additionally, we introduce the Adaptive Hierarchical Prompt framework, which automates the selection of appropriate prompting strategies for each task. This study compares manual and adaptive hierarchical prompt frameworks using four instruction-tuned LLMs, namely Llama 3 8B, Phi 3 3.8B, Mistral 7B, and Gemma 7B, across four datasets: BoolQ, CommonSenseQA (CSQA), IWSLT-2017 en-fr (IWSLT), and SamSum. Experiments demonstrate the effectiveness of HPT, providing a reliable way to compare different tasks and LLM capabilities. This paper leads to the development of a universal evaluation metric that can be used to evaluate both the complexity of the datasets and the capabilities of LLMs. The implementation of both manual HPF and adaptive HPF is publicly available.

A Systematic Survey of Prompt Engineering on Vision-Language Foundation Models

Prompt engineering is a technique that involves augmenting a large pre-trained model with task-specific hints, known as prompts, to adapt the model to new tasks. Prompts can be created manually as natural language instructions or generated automatically as either natural language instructions or vector representations. Prompt engineering enables the ability to perform predictions based solely on prompts without updating model parameters, and the easier application of large pre-trained models in real-world tasks. In past years, Prompt engineering has been well-studied in natural language processing. Recently, it has also been intensively studied in vision-language modeling. However, there is currently a lack of a systematic overview of prompt engineering on pre-trained vision-language models. This paper aims to provide a comprehensive survey of cutting-edge research in prompt engineering on three types of vision-language models: multimodal-to-text generation models (e.g. Flamingo), image-text matching models (e.g. CLIP), and text-to-image generation models (e.g. Stable Diffusion). For each type of model, a brief model summary, prompting methods, prompting-based applications, and the corresponding responsibility and integrity issues are summarized and discussed. Furthermore, the commonalities and differences between prompting on vision-language models, language models, and vision models are also discussed. The challenges, future directions, and research opportunities are summarized to foster future research on this topic.

PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Heuristic-based Sampling

Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework PRompt Optimization in Multi-Step Tasks (PROMST) that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6\%-29.3\% improvement to current best methods on five LLMs respectively). We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks. Datasets and Codes are available at https://github.com/yongchao98/PROMST. Project Page is available at https://yongchao98.github.io/MIT-REALM-PROMST.

Mental-LLM: Leveraging Large Language Models for Mental Health Prediction via Online Text Data

Advances in large language models (LLMs) have empowered a variety of applications. However, there is still a significant gap in research when it comes to understanding and enhancing the capabilities of LLMs in the field of mental health. In this work, we present the first comprehensive evaluation of multiple LLMs, including Alpaca, Alpaca-LoRA, FLAN-T5, GPT-3.5, and GPT-4, on various mental health prediction tasks via online text data. We conduct a broad range of experiments, covering zero-shot prompting, few-shot prompting, and instruction fine-tuning. The results indicate a promising yet limited performance of LLMs with zero-shot and few-shot prompt designs for the mental health tasks. More importantly, our experiments show that instruction finetuning can significantly boost the performance of LLMs for all tasks simultaneously. Our best-finetuned models, Mental-Alpaca and Mental-FLAN-T5, outperform the best prompt design of GPT-3.5 (25 and 15 times bigger) by 10.9% on balanced accuracy and the best of GPT-4 (250 and 150 times bigger) by 4.8%. They further perform on par with the state-of-the-art task-specific language model. We also conduct an exploratory case study on LLMs' capability on the mental health reasoning tasks, illustrating the promising capability of certain models such as GPT-4. We summarize our findings into a set of action guidelines for potential methods to enhance LLMs' capability for mental health tasks. Meanwhile, we also emphasize the important limitations before achieving deployability in real-world mental health settings, such as known racial and gender bias. We highlight the important ethical risks accompanying this line of research.

Jurassic is (almost) All You Need: Few-Shot Meaning-to-Text Generation for Open-Domain Dialogue

One challenge with open-domain dialogue systems is the need to produce truthful, high-quality responses on any topic. We aim to improve the quality and coverage of Athena, an Alexa Prize dialogue system. We experiment with few-shot prompt-based learning, comparing GPT-Neo to Jurassic-1, for the movies, music, TV, sports, and video game domains, both within and cross-domain, with different prompt set sizes (2, 3, 10), formats, and meaning representations consisting of either sets of WikiData KG triples, or dialogue acts. Our evaluation uses BLEURT and human metrics, and shows that with 10-shot prompting, Athena-Jurassic's performance is significantly better for coherence and semantic accuracy. Experiments with 2-shot cross-domain prompts results in a huge performance drop for Athena-GPT-Neo, whose semantic accuracy falls to 0.41, and whose untrue hallucination rate increases to 12%. Experiments with dialogue acts for video games show that with 10-shot prompting, both models learn to control dialogue acts, but Athena-Jurassic has significantly higher coherence, and only 4% untrue hallucinations. Our results suggest that Athena-Jurassic produces high enough quality outputs to be useful in live systems with real users. To our knowledge, these are the first results demonstrating that few-shot semantic prompt-based learning can create NLGs that generalize to new domains, and produce high-quality, semantically-controlled, conversational responses directly from meaning representations.

Prompt Recursive Search: A Living Framework with Adaptive Growth in LLM Auto-Prompting

Large Language Models (LLMs) exhibit remarkable proficiency in addressing a diverse array of tasks within the Natural Language Processing (NLP) domain, with various prompt design strategies significantly augmenting their capabilities. However, these prompts, while beneficial, each possess inherent limitations. The primary prompt design methodologies are twofold: The first, exemplified by the Chain of Thought (CoT), involves manually crafting prompts specific to individual datasets, hence termed Expert-Designed Prompts (EDPs). Once these prompts are established, they are unalterable, and their effectiveness is capped by the expertise of the human designers. When applied to LLMs, the static nature of EDPs results in a uniform approach to both simple and complex problems within the same dataset, leading to the inefficient use of tokens for straightforward issues. The second method involves prompts autonomously generated by the LLM, known as LLM-Derived Prompts (LDPs), which provide tailored solutions to specific problems, mitigating the limitations of EDPs. However, LDPs may encounter a decline in performance when tackling complex problems due to the potential for error accumulation during the solution planning process. To address these challenges, we have conceived a novel Prompt Recursive Search (PRS) framework that leverages the LLM to generate solutions specific to the problem, thereby conserving tokens. The framework incorporates an assessment of problem complexity and an adjustable structure, ensuring a reduction in the likelihood of errors. We have substantiated the efficacy of PRS framework through extensive experiments using LLMs with different numbers of parameters across a spectrum of datasets in various domains. Compared to the CoT method, the PRS method has increased the accuracy on the BBH dataset by 8% using Llama3-7B model, achieving a 22% improvement.

Consistency-guided Prompt Learning for Vision-Language Models

We propose Consistency-guided Prompt learning (CoPrompt), a new fine-tuning method for vision-language models. Our approach improves the generalization of large foundation models when fine-tuned on downstream tasks in a few-shot setting. The basic idea of CoPrompt is to enforce a consistency constraint in the prediction of the trainable and pre-trained models to prevent overfitting on the downstream task. Additionally, we introduce the following two components into our consistency constraint to further boost the performance: enforcing consistency on two perturbed inputs and combining two dominant paradigms of tuning, prompting and adapter. Enforcing consistency on perturbed input serves to further regularize the consistency constraint, thereby improving generalization. Moreover, the integration of adapters and prompts not only enhances performance on downstream tasks but also offers increased tuning flexibility in both input and output spaces. This facilitates more effective adaptation to downstream tasks in a few-shot learning setting. Experiments show that CoPrompt outperforms existing methods on a range of evaluation suites, including base-to-novel generalization, domain generalization, and cross-dataset evaluation. On generalization, CoPrompt improves the state-of-the-art on zero-shot tasks and the overall harmonic mean over 11 datasets. Detailed ablation studies show the effectiveness of each of the components in CoPrompt. We make our code available at https://github.com/ShuvenduRoy/CoPrompt.

Prompting Frameworks for Large Language Models: A Survey

Since the launch of ChatGPT, a powerful AI Chatbot developed by OpenAI, large language models (LLMs) have made significant advancements in both academia and industry, bringing about a fundamental engineering paradigm shift in many areas. While LLMs are powerful, it is also crucial to best use their power where "prompt'' plays a core role. However, the booming LLMs themselves, including excellent APIs like ChatGPT, have several inherent limitations: 1) temporal lag of training data, and 2) the lack of physical capabilities to perform external actions. Recently, we have observed the trend of utilizing prompt-based tools to better utilize the power of LLMs for downstream tasks, but a lack of systematic literature and standardized terminology, partly due to the rapid evolution of this field. Therefore, in this work, we survey related prompting tools and promote the concept of the "Prompting Framework" (PF), i.e. the framework for managing, simplifying, and facilitating interaction with large language models. We define the lifecycle of the PF as a hierarchical structure, from bottom to top, namely: Data Level, Base Level, Execute Level, and Service Level. We also systematically depict the overall landscape of the emerging PF field and discuss potential future research and challenges. To continuously track the developments in this area, we maintain a repository at https://github.com/lxx0628/Prompting-Framework-Survey, which can be a useful resource sharing platform for both academic and industry in this field.

USCD: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding

Large language models (LLMs) have shown remarkable capabilities in code generation. However, the effects of hallucinations (e.g., output noise) make it particularly challenging for LLMs to generate high-quality code in one pass. In this work, we propose a simple and effective uncertainty-aware selective contrastive decoding (USCD) mechanism to improve the quality of one-pass code generation in LLMs and reduce the impact of output noise. To be specific, we first elaborately designed a negative prompt (namely lame prompt) to output noise by removing input-output examples from the standard few-shot prompt. Our preliminary study shows that the Jensen-Shannon divergence (JS divergence) between token distribution uncertainty and the output noise is relatively low (approximately 0.25), indicating their high relevance. Then, we selectively eliminate output noise induced by lame prompts based on the uncertainty of the prediction distribution from the standard prompt. Notably, our proposed plug-and-play mechanism is an inference-only method, enjoying appealing flexibility. Extensive experiments on widely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs (i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b), demonstrate that our proposed USCD significantly improves one-pass code generation, with an average pass@1 scores increase of 16.59\%. We will release code and data on GitHub.

(Dynamic) Prompting might be all you need to repair Compressed LLMs

Large language models (LLMs), while transformative for NLP, come with significant computational demands, underlining the need for efficient, training-free compression. Notably, the reliability of perplexity as a benchmark for compressed model efficacy is in question, as our tests using LLaMA-7B and OPT-6.7b reveal a significant performance drop in several realistic downstream tasks, underscoring the disparity between perplexity as a performance indicator and real-world performance. Investigation into the trade-off between resource-intensive post-compression re-training highlights the prospect of prompt-driven recovery as a lightweight adaption tool. However, existing studies, confined mainly to perplexity evaluations and simple tasks, fail to offer unequivocal confidence in the scalability and generalizability of prompting. We tackle this uncertainty in two key ways. First, we uncover the vulnerability of naive prompts in LLM compression as an over-reliance on a singular prompt per input. In response, we propose inference-time dynamic prompting (IDP), a mechanism that autonomously chooses from a set of curated prompts based on the context of each individual input. Second, we delve into a scientific understanding of why ``prompting might be all you need post-LLM compression". Our findings suggest that compression doesn't irretrievably erase LLM model knowledge but displace it, necessitating a new inference path. IDP effectively redirects this path, enabling the model to tap into its inherent yet displaced knowledge and thereby recover performance. Empirical tests affirm the value of IDP, demonstrating an average performance improvement of 1.24% across nine varied tasks spanning multiple knowledge domains.

Re-Reading Improves Reasoning in Language Models

Reasoning presents a significant and challenging issue for Large Language Models (LLMs). The predominant focus of research has revolved around developing diverse prompting strategies to guide and structure the reasoning processes of LLMs. However, these approaches based on decoder-only causal language models often operate the input question in a single forward pass, potentially missing the rich, back-and-forth interactions inherent in human reasoning. Scant attention has been paid to a critical dimension, i.e., the input question itself embedded within the prompts. In response, we introduce a deceptively simple yet highly effective prompting strategy, termed question "re-reading". Drawing inspiration from human learning and problem-solving, re-reading entails revisiting the question information embedded within input prompts. This approach aligns seamlessly with the cognitive principle of reinforcement, enabling LLMs to extract deeper insights, identify intricate patterns, establish more nuanced connections, and ultimately enhance their reasoning capabilities across various tasks. Experiments conducted on a series of reasoning benchmarks serve to underscore the effectiveness and generality of our method. Moreover, our findings demonstrate that our approach seamlessly integrates with various language models, though-eliciting prompting methods, and ensemble techniques, further underscoring its versatility and compatibility in the realm of LLMs.

Model Tells Itself Where to Attend: Faithfulness Meets Automatic Attention Steering

Large language models (LLMs) have demonstrated remarkable performance across various real-world tasks. However, they often struggle to fully comprehend and effectively utilize their input contexts, resulting in responses that are unfaithful or hallucinated. This difficulty increases for contexts that are long or contain distracting information, which can divert LLMs from fully capturing essential evidence. To address this issue, many works use prompting to help LLMs utilize contextual information more faithfully. For instance, iterative prompting highlights key information in two steps that first ask the LLM to identify important pieces of context and then derive answers accordingly. However, prompting methods are constrained to highlighting key information implicitly in token space, which is often insufficient to fully steer the model's attention. To improve model faithfulness more reliably, we propose AutoPASTA, a method that automatically identifies key contextual information and explicitly highlights it by steering an LLM's attention scores. Like prompting, AutoPASTA is applied at inference time and does not require changing any model parameters. Our experiments on open-book QA demonstrate that AutoPASTA effectively enables models to grasp essential contextual information, leading to substantially improved model faithfulness and performance, e.g., an average improvement of 7.95% for LLAMA3-70B-Instruct. Code will be publicly available at https://github.com/QingruZhang/AutoPASTA .

Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves

Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named `Rephrase and Respond' (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.

Automatic Chain of Thought Prompting in Large Language Models

Large language models (LLMs) can perform complex reasoning by generating intermediate reasoning steps. Providing these steps for prompting demonstrations is called chain-of-thought (CoT) prompting. CoT prompting has two major paradigms. One leverages a simple prompt like "Let's think step by step" to facilitate step-by-step thinking before answering a question. The other uses a few manual demonstrations one by one, each composed of a question and a reasoning chain that leads to an answer. The superior performance of the second paradigm hinges on the hand-crafting of task-specific demonstrations one by one. We show that such manual efforts may be eliminated by leveraging LLMs with the "Let's think step by step" prompt to generate reasoning chains for demonstrations one by one, i.e., let's think not just step by step, but also one by one. However, these generated chains often come with mistakes. To mitigate the effect of such mistakes, we find that diversity matters for automatically constructing demonstrations. We propose an automatic CoT prompting method: Auto-CoT. It samples questions with diversity and generates reasoning chains to construct demonstrations. On ten public benchmark reasoning tasks with GPT-3, Auto-CoT consistently matches or exceeds the performance of the CoT paradigm that requires manual designs of demonstrations. Code is available at https://github.com/amazon-research/auto-cot

VideoBooth: Diffusion-based Video Generation with Image Prompts

Text-driven video generation witnesses rapid progress. However, merely using text prompts is not enough to depict the desired subject appearance that accurately aligns with users' intents, especially for customized content creation. In this paper, we study the task of video generation with image prompts, which provide more accurate and direct content control beyond the text prompts. Specifically, we propose a feed-forward framework VideoBooth, with two dedicated designs: 1) We propose to embed image prompts in a coarse-to-fine manner. Coarse visual embeddings from image encoder provide high-level encodings of image prompts, while fine visual embeddings from the proposed attention injection module provide multi-scale and detailed encoding of image prompts. These two complementary embeddings can faithfully capture the desired appearance. 2) In the attention injection module at fine level, multi-scale image prompts are fed into different cross-frame attention layers as additional keys and values. This extra spatial information refines the details in the first frame and then it is propagated to the remaining frames, which maintains temporal consistency. Extensive experiments demonstrate that VideoBooth achieves state-of-the-art performance in generating customized high-quality videos with subjects specified in image prompts. Notably, VideoBooth is a generalizable framework where a single model works for a wide range of image prompts with feed-forward pass.

Complexity-Based Prompting for Multi-Step Reasoning

We study the task of prompting large-scale language models to perform multi-step reasoning. Existing work shows that when prompted with a chain of thoughts (CoT), sequences of short sentences describing intermediate reasoning steps towards a final answer, large language models can generate new reasoning chains and predict answers for new inputs. A central question is which reasoning examples make the most effective prompts. In this work, we propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning. We show that prompts with higher reasoning complexity, i.e., chains with more reasoning steps, achieve substantially better performance on multi-step reasoning tasks over strong baselines. We further extend our complexity-based criteria from prompting (selecting inputs) to decoding (selecting outputs), where we sample multiple reasoning chains from the model, then choose the majority of generated answers from complex reasoning chains (over simple chains). When used to prompt GPT-3 and Codex, our approach substantially improves multi-step reasoning accuracy and achieves new state-of-the-art (SOTA) performance on three math benchmarks (GSM8K, MultiArith, and MathQA) and two BigBenchHard tasks (Date Understanding and Penguins), with an average +5.3 and up to +18 accuracy improvements. Compared with existing example selection schemes like manual tuning or retrieval-based selection, selection based on reasoning complexity is intuitive, easy to implement, and annotation-efficient. Further results demonstrate the robustness of performance gains from complex prompts under format perturbation and distribution shift.

DPL: Decoupled Prompt Learning for Vision-Language Models

Prompt learning has emerged as an efficient and effective approach for transferring foundational Vision-Language Models (e.g., CLIP) to downstream tasks. However, current methods tend to overfit to seen categories, thereby limiting their generalization ability for unseen classes. In this paper, we propose a new method, Decoupled Prompt Learning (DPL), which reformulates the attention in prompt learning to alleviate this problem. Specifically, we theoretically investigate the collaborative process between prompts and instances (i.e., image patches/text tokens) by reformulating the original self-attention into four separate sub-processes. Through detailed analysis, we observe that certain sub-processes can be strengthened to bolster robustness and generalizability by some approximation techniques. Furthermore, we introduce language-conditioned textual prompting based on decoupled attention to naturally preserve the generalization of text input. Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning. By combining the proposed techniques, our approach achieves state-of-the-art performance on three representative benchmarks encompassing 15 image recognition datasets, while maintaining parameter-efficient. Moreover, our DPL does not rely on any auxiliary regularization task or extra training data, further demonstrating its remarkable generalization ability.

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Learning to converse using only a few examples is a great challenge in conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep them up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in nine response generation tasks, which include four knowledge-grounded tasks, a task-oriented generations task, three open-chat tasks, and controlled stylistic generation, and five conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, document retrieval, and internet query generation. The current largest released LM (GPT-J-6B) using prompt-based few-shot learning, and thus requiring no training, achieves competitive performance to fully trained state-of-the-art models. Moreover, we propose a novel prompt-based few-shot classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history. Finally, by combining the power of prompt-based few-shot learning and a Skill Selector, we create an end-to-end chatbot named the Few-Shot Bot (FSB), which automatically selects the most appropriate conversational skill, queries different knowledge bases or the internet, and uses the retrieved knowledge to generate a human-like response, all using only few dialogue examples per skill.

MTVG : Multi-text Video Generation with Text-to-Video Models

Recently, video generation has attracted massive attention and yielded noticeable outcomes. Concerning the characteristics of video, multi-text conditioning incorporating sequential events is necessary for next-step video generation. In this work, we propose a novel multi-text video generation~(MTVG) by directly utilizing a pre-trained diffusion-based text-to-video~(T2V) generation model without additional fine-tuning. To generate consecutive video segments, visual consistency generated by distinct prompts is necessary with diverse variations, such as motion and content-related transitions. Our proposed MTVG includes Dynamic Noise and Last Frame Aware Inversion which reinitialize the noise latent to preserve visual coherence between videos of different prompts and prevent repetitive motion or contents. Furthermore, we present Structure Guiding Sampling to maintain the global appearance across the frames in a single video clip, where we leverage iterative latent updates across the preceding frame. Additionally, our Prompt Generator allows for arbitrary format of text conditions consisting of diverse events. As a result, our extensive experiments, including diverse transitions of descriptions, demonstrate that our proposed methods show superior generated outputs in terms of semantically coherent and temporally seamless video.Video examples are available in our project page: https://kuai-lab.github.io/mtvg-page.

PromptFix: You Prompt and We Fix the Photo

Diffusion models equipped with language models demonstrate excellent controllability in image generation tasks, allowing image processing to adhere to human instructions. However, the lack of diverse instruction-following data hampers the development of models that effectively recognize and execute user-customized instructions, particularly in low-level tasks. Moreover, the stochastic nature of the diffusion process leads to deficiencies in image generation or editing tasks that require the detailed preservation of the generated images. To address these limitations, we propose PromptFix, a comprehensive framework that enables diffusion models to follow human instructions to perform a wide variety of image-processing tasks. First, we construct a large-scale instruction-following dataset that covers comprehensive image-processing tasks, including low-level tasks, image editing, and object creation. Next, we propose a high-frequency guidance sampling method to explicitly control the denoising process and preserve high-frequency details in unprocessed areas. Finally, we design an auxiliary prompting adapter, utilizing Vision-Language Models (VLMs) to enhance text prompts and improve the model's task generalization. Experimental results show that PromptFix outperforms previous methods in various image-processing tasks. Our proposed model also achieves comparable inference efficiency with these baseline models and exhibits superior zero-shot capabilities in blind restoration and combination tasks. The dataset and code are available at https://www.yongshengyu.com/PromptFix-Page.

A Critical Review of Large Language Model on Software Engineering: An Example from ChatGPT and Automated Program Repair

Large Language Models (LLMs) have been gaining increasing attention and demonstrated promising performance across a variety of Software Engineering (SE) tasks, such as Automated Program Repair (APR), code summarization, and code completion. For example, ChatGPT, the latest black-box LLM, has been investigated by numerous recent research studies and has shown impressive performance in various tasks. However, there exists a potential risk of data leakage since these LLMs are usually close-sourced with unknown specific training details, e.g., pre-training datasets. In this paper, we seek to review the bug-fixing capabilities of ChatGPT on a clean APR benchmark with different research objectives. We first introduce {\benchmark}, a new benchmark with buggy and the corresponding fixed programs from competitive programming problems starting from 2023, after the training cutoff point of ChatGPT. The results on {\benchmark} show that ChatGPT is able to fix 109 out of 151 buggy programs using the basic prompt within 35 independent rounds, outperforming state-of-the-art LLMs CodeT5 and PLBART by 27.5\% and 62.4\% prediction accuracy. We also investigate the impact of three types of prompts, i.e., problem description, error feedback, and bug localization, leading to additional 34 fixed bugs. Besides, we provide additional discussion from the interactive nature of ChatGPT to illustrate the capacity of a dialog-based repair workflow with 9 additional fixed bugs. Inspired by the findings, we further pinpoint various challenges and opportunities for advanced SE study equipped with such LLMs (e.g.,~ChatGPT) in the near future. More importantly, our work calls for more research on the reevaluation of the achievements obtained by existing black-box LLMs across various SE tasks, not limited to ChatGPT on APR.

Self-Supervised Prompt Optimization

Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities while aligning their outputs with task requirements across diverse domains. However, manually designed prompts require expertise and iterative experimentation. While existing prompt optimization methods aim to automate this process, they rely heavily on external references such as ground truth or by humans, limiting their applicability in real-world scenarios where such data is unavailable or costly to obtain. To address this, we propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks without requiring external reference. Motivated by the observations that prompt quality manifests directly in LLM outputs and LLMs can effectively assess adherence to task requirements, we derive evaluation and optimization signals purely from output comparisons. Specifically, SPO selects superior prompts through pairwise output comparisons evaluated by an LLM evaluator, followed by an LLM optimizer that aligns outputs with task requirements. Extensive experiments demonstrate that SPO outperforms state-of-the-art prompt optimization methods, achieving comparable or superior results with significantly lower costs (e.g., 1.1% to 5.6% of existing methods) and fewer samples (e.g., three samples). The code is available at https://github.com/geekan/MetaGPT.