new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 22

A Real-time Faint Space Debris Detector With Learning-based LCM

With the development of aerospace technology, the increasing population of space debris has posed a great threat to the safety of spacecraft. However, the low intensity of reflected light and high angular velocity of space debris impede the extraction. Besides, due to the limitations of the ground observation methods, small space debris can hardly be detected, making it necessary to enhance the spacecraft's capacity for space situational awareness (SSA). Considering that traditional methods have some defects in low-SNR target detection, such as low effectiveness and large time consumption, this paper proposes a method for low-SNR streak extraction based on local contrast and maximum likelihood estimation (MLE), which can detect space objects with SNR 2.0 efficiently. In the proposed algorithm, local contrast will be applied for crude classifications, which will return connected components as preliminary results, and then MLE will be performed to reconstruct the connected components of targets via orientated growth, further improving the precision. The algorithm has been verified with both simulated streaks and real star tracker images, and the average centroid error of the proposed algorithm is close to the state-of-the-art method like ODCC. At the same time, the algorithm in this paper has significant advantages in efficiency compared with ODCC. In conclusion, the algorithm in this paper is of high speed and precision, which guarantees its promising applications in the extraction of high dynamic targets.

POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction

3D reconstruction in dynamic scenes primarily relies on the combination of geometry estimation and matching modules where the latter task is pivotal for distinguishing dynamic regions which can help to mitigate the interference introduced by camera and object motion. Furthermore, the matching module explicitly models object motion, enabling the tracking of specific targets and advancing motion understanding in complex scenarios. Recently, the proposed representation of pointmap in DUSt3R suggests a potential solution to unify both geometry estimation and matching in 3D space, but it still struggles with ambiguous matching in dynamic regions, which may hamper further improvement. In this work, we present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion. Specifically, our method first learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps within a unified coordinate system. Furthermore, we introduce a temporal motion module for dynamic motions that ensures scale consistency across different frames and enhances performance in tasks requiring both precise geometry and reliable matching, most notably 3D point tracking. We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks, including video depth estimation, 3D point tracking, and pose estimation. Code and models are publicly available at https://github.com/wyddmw/POMATO.

IRepair: An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models

Not a day goes by without hearing about the impressive feats of large language models (LLMs), and equally, not a day passes without hearing about their challenges. LLMs are notoriously vulnerable to biases in their dataset, leading to issues such as toxicity. While domain-adaptive training has been employed to mitigate these issues, these techniques often address all model parameters indiscriminately during the repair process, resulting in poor repair quality and reduced model versatility. In this paper, we introduce a novel dynamic slicing-based intent-aware LLM repair strategy, IRepair. This approach selectively targets the most error-prone sections of the model for repair. Specifically, we propose dynamically slicing the model's most sensitive layers that require immediate attention, concentrating repair efforts on those areas. This method enables more effective repairs with potentially less impact on the model's overall performance by altering a smaller portion of the model. We evaluated our technique on three models from the GPT2 and GPT-Neo families, with parameters ranging from 800M to 1.6B, in a toxicity mitigation setup. Our results show that IRepair repairs errors 43.6% more effectively while causing 46% less disruption to general performance compared to the closest baseline, direct preference optimization. Our empirical analysis also reveals that errors are more concentrated in a smaller section of the model, with the top 20% of layers exhibiting 773% more error density than the remaining 80\%. This highlights the need for selective repair. Additionally, we demonstrate that a dynamic selection approach is essential for addressing errors dispersed throughout the model, ensuring a robust and efficient repair.

Unraveling Complex Data Diversity in Underwater Acoustic Target Recognition through Convolution-based Mixture of Experts

Underwater acoustic target recognition is a difficult task owing to the intricate nature of underwater acoustic signals. The complex underwater environments, unpredictable transmission channels, and dynamic motion states greatly impact the real-world underwater acoustic signals, and may even obscure the intrinsic characteristics related to targets. Consequently, the data distribution of underwater acoustic signals exhibits high intra-class diversity, thereby compromising the accuracy and robustness of recognition systems.To address these issues, this work proposes a convolution-based mixture of experts (CMoE) that recognizes underwater targets in a fine-grained manner. The proposed technique introduces multiple expert layers as independent learners, along with a routing layer that determines the assignment of experts according to the characteristics of inputs. This design allows the model to utilize independent parameter spaces, facilitating the learning of complex underwater signals with high intra-class diversity. Furthermore, this work optimizes the CMoE structure by balancing regularization and an optional residual module. To validate the efficacy of our proposed techniques, we conducted detailed experiments and visualization analyses on three underwater acoustic databases across several acoustic features. The experimental results demonstrate that our CMoE consistently achieves significant performance improvements, delivering superior recognition accuracy when compared to existing advanced methods.

Meta OOD Learning for Continuously Adaptive OOD Detection

Out-of-distribution (OOD) detection is crucial to modern deep learning applications by identifying and alerting about the OOD samples that should not be tested or used for making predictions. Current OOD detection methods have made significant progress when in-distribution (ID) and OOD samples are drawn from static distributions. However, this can be unrealistic when applied to real-world systems which often undergo continuous variations and shifts in ID and OOD distributions over time. Therefore, for an effective application in real-world systems, the development of OOD detection methods that can adapt to these dynamic and evolving distributions is essential. In this paper, we propose a novel and more realistic setting called continuously adaptive out-of-distribution (CAOOD) detection which targets on developing an OOD detection model that enables dynamic and quick adaptation to a new arriving distribution, with insufficient ID samples during deployment time. To address CAOOD, we develop meta OOD learning (MOL) by designing a learning-to-adapt diagram such that a good initialized OOD detection model is learned during the training process. In the testing process, MOL ensures OOD detection performance over shifting distributions by quickly adapting to new distributions with a few adaptations. Extensive experiments on several OOD benchmarks endorse the effectiveness of our method in preserving both ID classification accuracy and OOD detection performance on continuously shifting distributions.

DDoS-UNet: Incorporating temporal information using Dynamic Dual-channel UNet for enhancing super-resolution of dynamic MRI

Magnetic resonance imaging (MRI) provides high spatial resolution and excellent soft-tissue contrast without using harmful ionising radiation. Dynamic MRI is an essential tool for interventions to visualise movements or changes of the target organ. However, such MRI acquisition with high temporal resolution suffers from limited spatial resolution - also known as the spatio-temporal trade-off of dynamic MRI. Several approaches, including deep learning based super-resolution approaches, have been proposed to mitigate this trade-off. Nevertheless, such an approach typically aims to super-resolve each time-point separately, treating them as individual volumes. This research addresses the problem by creating a deep learning model which attempts to learn both spatial and temporal relationships. A modified 3D UNet model, DDoS-UNet, is proposed - which takes the low-resolution volume of the current time-point along with a prior image volume. Initially, the network is supplied with a static high-resolution planning scan as the prior image along with the low-resolution input to super-resolve the first time-point. Then it continues step-wise by using the super-resolved time-points as the prior image while super-resolving the subsequent time-points. The model performance was tested with 3D dynamic data that was undersampled to different in-plane levels. The proposed network achieved an average SSIM value of 0.951pm0.017 while reconstructing the lowest resolution data (i.e. only 4\% of the k-space acquired) - which could result in a theoretical acceleration factor of 25. The proposed approach can be used to reduce the required scan-time while achieving high spatial resolution.

DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation

Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.

Aime: Towards Fully-Autonomous Multi-Agent Framework

Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) are emerging as a powerful paradigm for solving complex, multifaceted problems. However, the potential of these systems is often constrained by the prevalent plan-and-execute framework, which suffers from critical limitations: rigid plan execution, static agent capabilities, and inefficient communication. These weaknesses hinder their adaptability and robustness in dynamic environments. This paper introduces Aime, a novel multi-agent framework designed to overcome these challenges through dynamic, reactive planning and execution. Aime replaces the conventional static workflow with a fluid and adaptive architecture. Its core innovations include: (1) a Dynamic Planner that continuously refines the overall strategy based on real-time execution feedback; (2) an Actor Factory that implements Dynamic Actor instantiation, assembling specialized agents on-demand with tailored tools and knowledge; and (3) a centralized Progress Management Module that serves as a single source of truth for coherent, system-wide state awareness. We empirically evaluated Aime on a diverse suite of benchmarks spanning general reasoning (GAIA), software engineering (SWE-bench Verified), and live web navigation (WebVoyager). The results demonstrate that Aime consistently outperforms even highly specialized state-of-the-art agents in their respective domains. Its superior adaptability and task success rate establish Aime as a more resilient and effective foundation for multi-agent collaboration.

Dynamic Planning for LLM-based Graphical User Interface Automation

The advent of large language models (LLMs) has spurred considerable interest in advancing autonomous LLMs-based agents, particularly in intriguing applications within smartphone graphical user interfaces (GUIs). When presented with a task goal, these agents typically emulate human actions within a GUI environment until the task is completed. However, a key challenge lies in devising effective plans to guide action prediction in GUI tasks, though planning have been widely recognized as effective for decomposing complex tasks into a series of steps. Specifically, given the dynamic nature of environmental GUIs following action execution, it is crucial to dynamically adapt plans based on environmental feedback and action history.We show that the widely-used ReAct approach fails due to the excessively long historical dialogues. To address this challenge, we propose a novel approach called Dynamic Planning of Thoughts (D-PoT) for LLM-based GUI agents.D-PoT involves the dynamic adjustment of planning based on the environmental feedback and execution history. Experimental results reveal that the proposed D-PoT significantly surpassed the strong GPT-4V baseline by +12.7% (34.66% rightarrow 47.36%) in accuracy. The analysis highlights the generality of dynamic planning in different backbone LLMs, as well as the benefits in mitigating hallucinations and adapting to unseen tasks. Code is available at https://github.com/sqzhang-lazy/D-PoT.

Efficient Prompting via Dynamic In-Context Learning

The primary way of building AI applications is shifting from training specialist models to prompting generalist models. A common practice for prompting generalist models, often referred to as in-context learning, is to append a few examples (demonstrations) to the prompt to help the model better understand the task. While effective, in-context learning can be inefficient because it makes the input prompt much longer, consuming valuable space in the context window and leading to larger computational costs. In this paper, we propose DynaICL, a recipe for efficient prompting with black-box generalist models that dynamically allocate in-context examples according to the input complexity and the computational budget. To achieve this, we train a meta controller that predicts the number of in-context examples suitable for the generalist model to make a good prediction based on the performance-efficiency trade-off for a specific input. We then dynamically allocate the number of demonstrations for an input according to predictions from the meta controller and the given computation budget. Experimental results show that dynamic example allocation helps achieve a better performance-efficiency trade-off in two practical settings where computational resources or the required performance is constrained. Specifically, DynaICL saves up to 46% token budget compared to the common practice that allocates the same number of in-context examples to each input. We also find that a meta controller trained on a certain backbone model and tasks can successfully generalize to unseen models and tasks.

Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks

Softmax attention is the principle backbone of foundation models for various artificial intelligence applications, yet its quadratic complexity in sequence length can limit its inference throughput in long-context settings. To address this challenge, alternative architectures such as linear attention, State Space Models (SSMs), and Recurrent Neural Networks (RNNs) have been considered as more efficient alternatives. While connections between these approaches exist, such models are commonly developed in isolation and there is a lack of theoretical understanding of the shared principles underpinning these architectures and their subtle differences, greatly influencing performance and scalability. In this paper, we introduce the Dynamical Systems Framework (DSF), which allows a principled investigation of all these architectures in a common representation. Our framework facilitates rigorous comparisons, providing new insights on the distinctive characteristics of each model class. For instance, we compare linear attention and selective SSMs, detailing their differences and conditions under which both are equivalent. We also provide principled comparisons between softmax attention and other model classes, discussing the theoretical conditions under which softmax attention can be approximated. Additionally, we substantiate these new insights with empirical validations and mathematical arguments. This shows the DSF's potential to guide the systematic development of future more efficient and scalable foundation models.

One to rule them all: natural language to bind communication, perception and action

In recent years, research in the area of human-robot interaction has focused on developing robots capable of understanding complex human instructions and performing tasks in dynamic and diverse environments. These systems have a wide range of applications, from personal assistance to industrial robotics, emphasizing the importance of robots interacting flexibly, naturally and safely with humans. This paper presents an advanced architecture for robotic action planning that integrates communication, perception, and planning with Large Language Models (LLMs). Our system is designed to translate commands expressed in natural language into executable robot actions, incorporating environmental information and dynamically updating plans based on real-time feedback. The Planner Module is the core of the system where LLMs embedded in a modified ReAct framework are employed to interpret and carry out user commands. By leveraging their extensive pre-trained knowledge, LLMs can effectively process user requests without the need to introduce new knowledge on the changing environment. The modified ReAct framework further enhances the execution space by providing real-time environmental perception and the outcomes of physical actions. By combining robust and dynamic semantic map representations as graphs with control components and failure explanations, this architecture enhances a robot adaptability, task execution, and seamless collaboration with human users in shared and dynamic environments. Through the integration of continuous feedback loops with the environment the system can dynamically adjusts the plan to accommodate unexpected changes, optimizing the robot ability to perform tasks. Using a dataset of previous experience is possible to provide detailed feedback about the failure. Updating the LLMs context of the next iteration with suggestion on how to overcame the issue.

Dynamical Linear Bandits

In many real-world sequential decision-making problems, an action does not immediately reflect on the feedback and spreads its effects over a long time frame. For instance, in online advertising, investing in a platform produces an instantaneous increase of awareness, but the actual reward, i.e., a conversion, might occur far in the future. Furthermore, whether a conversion takes place depends on: how fast the awareness grows, its vanishing effects, and the synergy or interference with other advertising platforms. Previous work has investigated the Multi-Armed Bandit framework with the possibility of delayed and aggregated feedback, without a particular structure on how an action propagates in the future, disregarding possible dynamical effects. In this paper, we introduce a novel setting, the Dynamical Linear Bandits (DLB), an extension of the linear bandits characterized by a hidden state. When an action is performed, the learner observes a noisy reward whose mean is a linear function of the hidden state and of the action. Then, the hidden state evolves according to linear dynamics, affected by the performed action too. We start by introducing the setting, discussing the notion of optimal policy, and deriving an expected regret lower bound. Then, we provide an optimistic regret minimization algorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), that suffers an expected regret of order mathcal{O} Big( d sqrt{T}{(1-rho)^{3/2}} Big), where rho is a measure of the stability of the system, and d is the dimension of the action vector. Finally, we conduct a numerical validation on a synthetic environment and on real-world data to show the effectiveness of DynLin-UCB in comparison with several baselines.

Reward-Consistent Dynamics Models are Strongly Generalizable for Offline Reinforcement Learning

Learning a precise dynamics model can be crucial for offline reinforcement learning, which, unfortunately, has been found to be quite challenging. Dynamics models that are learned by fitting historical transitions often struggle to generalize to unseen transitions. In this study, we identify a hidden but pivotal factor termed dynamics reward that remains consistent across transitions, offering a pathway to better generalization. Therefore, we propose the idea of reward-consistent dynamics models: any trajectory generated by the dynamics model should maximize the dynamics reward derived from the data. We implement this idea as the MOREC (Model-based Offline reinforcement learning with Reward Consistency) method, which can be seamlessly integrated into previous offline model-based reinforcement learning (MBRL) methods. MOREC learns a generalizable dynamics reward function from offline data, which is subsequently employed as a transition filter in any offline MBRL method: when generating transitions, the dynamics model generates a batch of transitions and selects the one with the highest dynamics reward value. On a synthetic task, we visualize that MOREC has a strong generalization ability and can surprisingly recover some distant unseen transitions. On 21 offline tasks in D4RL and NeoRL benchmarks, MOREC improves the previous state-of-the-art performance by a significant margin, i.e., 4.6% on D4RL tasks and 25.9% on NeoRL tasks. Notably, MOREC is the first method that can achieve above 95% online RL performance in 6 out of 12 D4RL tasks and 3 out of 9 NeoRL tasks.

Dynamic Neural Network is All You Need: Understanding the Robustness of Dynamic Mechanisms in Neural Networks

Deep Neural Networks (DNNs) have been used to solve different day-to-day problems. Recently, DNNs have been deployed in real-time systems, and lowering the energy consumption and response time has become the need of the hour. To address this scenario, researchers have proposed incorporating dynamic mechanism to static DNNs (SDNN) to create Dynamic Neural Networks (DyNNs) performing dynamic amounts of computation based on the input complexity. Although incorporating dynamic mechanism into SDNNs would be preferable in real-time systems, it also becomes important to evaluate how the introduction of dynamic mechanism impacts the robustness of the models. However, there has not been a significant number of works focusing on the robustness trade-off between SDNNs and DyNNs. To address this issue, we propose to investigate the robustness of dynamic mechanism in DyNNs and how dynamic mechanism design impacts the robustness of DyNNs. For that purpose, we evaluate three research questions. These evaluations are performed on three models and two datasets. Through the studies, we find that attack transferability from DyNNs to SDNNs is higher than attack transferability from SDNNs to DyNNs. Also, we find that DyNNs can be used to generate adversarial samples more efficiently than SDNNs. Then, through research studies, we provide insight into the design choices that can increase robustness of DyNNs against the attack generated using static model. Finally, we propose a novel attack to understand the additional attack surface introduced by the dynamic mechanism and provide design choices to improve robustness against the attack.

TempoRL: laser pulse temporal shape optimization with Deep Reinforcement Learning

High Power Laser's (HPL) optimal performance is essential for the success of a wide variety of experimental tasks related to light-matter interactions. Traditionally, HPL parameters are optimised in an automated fashion relying on black-box numerical methods. However, these can be demanding in terms of computational resources and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a promising alternative framework for optimising HPL performance since it allows to tune the control parameters as a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration, particularly suitable for dynamic processes involving sequential decision-making. This is particularly relevant as laser systems are typically characterised by dynamic rather than static traits. Hence the need for a strategy to choose the control applied based on the current context instead of one single optimal control configuration. This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems. We apply this technique to optimise the temporal profile of laser pulses in the L1 pump laser hosted at the ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at half-maximum (FWHM) of ca1.6 ps.

Improving Visual Object Tracking through Visual Prompting

Learning a discriminative model to distinguish a target from its surrounding distractors is essential to generic visual object tracking. Dynamic target representation adaptation against distractors is challenging due to the limited discriminative capabilities of prevailing trackers. We present a new visual Prompting mechanism for generic Visual Object Tracking (PiVOT) to address this issue. PiVOT proposes a prompt generation network with the pre-trained foundation model CLIP to automatically generate and refine visual prompts, enabling the transfer of foundation model knowledge for tracking. While CLIP offers broad category-level knowledge, the tracker, trained on instance-specific data, excels at recognizing unique object instances. Thus, PiVOT first compiles a visual prompt highlighting potential target locations. To transfer the knowledge of CLIP to the tracker, PiVOT leverages CLIP to refine the visual prompt based on the similarities between candidate objects and the reference templates across potential targets. Once the visual prompt is refined, it can better highlight potential target locations, thereby reducing irrelevant prompt information. With the proposed prompting mechanism, the tracker can generate improved instance-aware feature maps through the guidance of the visual prompt, thus effectively reducing distractors. The proposed method does not involve CLIP during training, thereby keeping the same training complexity and preserving the generalization capability of the pretrained foundation model. Extensive experiments across multiple benchmarks indicate that PiVOT, using the proposed prompting method can suppress distracting objects and enhance the tracker.

DyFraNet: Forecasting and Backcasting Dynamic Fracture Mechanics in Space and Time Using a 2D-to-3D Deep Neural Network

The dynamics of materials failure is one of the most critical phenomena in a range of scientific and engineering fields, from healthcare to structural materials to transportation. In this paper we propose a specially designed deep neural network, DyFraNet, which can predict dynamic fracture behaviors by identifying a complete history of fracture propagation - from cracking onset, as a crack grows through the material, modeled as a series of frames evolving over time and dependent on each other. Furthermore, this model can not only forecast future fracture processes but also backcast to elucidate the past fracture history. In this scenario, once provided with the outcome of a fracture event, the model will elucidate past events that led to this state and will predict the future evolution of the failure process. By comparing the predicted results with atomistic-level simulations and theory, we show that DyFraNet can capture dynamic fracture mechanics by accurately predicting how cracks develop over time, including measures such as the crack speed, as well as when cracks become unstable. We use GradCAM to interpret how DyFraNet perceives the relationship between geometric conditions and fracture dynamics and we find DyFraNet pays special attention to the areas around crack tips, which have a critical influence in the early stage of fracture propagation. In later stages, the model pays increased attention to the existing or newly formed damage distribution in the material. The proposed approach offers significant potential to accelerate the exploration of the dynamics in material design against fracture failures and can be beneficially adapted for all kinds of dynamical engineering problems.

DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation

Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024times1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver

Nebula: Self-Attention for Dynamic Malware Analysis

Dynamic analysis enables detecting Windows malware by executing programs in a controlled environment and logging their actions. Previous work has proposed training machine learning models, i.e., convolutional and long short-term memory networks, on homogeneous input features like runtime APIs to either detect or classify malware, neglecting other relevant information coming from heterogeneous data like network and file operations. To overcome these issues, we introduce Nebula, a versatile, self-attention Transformer-based neural architecture that generalizes across different behavioral representations and formats, combining diverse information from dynamic log reports. Nebula is composed by several components needed to tokenize, filter, normalize and encode data to feed the transformer architecture. We firstly perform a comprehensive ablation study to evaluate their impact on the performance of the whole system, highlighting which components can be used as-is, and which must be enriched with specific domain knowledge. We perform extensive experiments on both malware detection and classification tasks, using three datasets acquired from different dynamic analyses platforms, show that, on average, Nebula outperforms state-of-the-art models at low false positive rates, with a peak of 12% improvement. Moreover, we showcase how self-supervised learning pre-training matches the performance of fully-supervised models with only 20% of training data, and we inspect the output of Nebula through explainable AI techniques, pinpointing how attention is focusing on specific tokens correlated to malicious activities of malware families. To foster reproducibility, we open-source our findings and models at https://github.com/dtrizna/nebula.

Solving robust MDPs as a sequence of static RL problems

Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.

SwitchVLA: Execution-Aware Task Switching for Vision-Language-Action Models

Robots deployed in dynamic environments must be able to not only follow diverse language instructions but flexibly adapt when user intent changes mid-execution. While recent Vision-Language-Action (VLA) models have advanced multi-task learning and instruction following, they typically assume static task intent, failing to respond when new instructions arrive during ongoing execution. This limitation hinders natural and robust interaction in dynamic settings, such as retail or household environments, where real-time intent changes are common. We propose SwitchVLA, a unified, execution-aware framework that enables smooth and reactive task switching without external planners or additional switch-specific data. We model task switching as a behavior modulation problem conditioned on execution state and instruction context. Expert demonstrations are segmented into temporally grounded contact phases, allowing the policy to infer task progress and adjust its behavior accordingly. A multi-behavior conditional policy is then trained to generate flexible action chunks under varying behavior modes through conditioned trajectory modeling. Experiments in both simulation and real-world robotic manipulation demonstrate that SwitchVLA enables robust instruction adherence, fluid task switching, and strong generalization-outperforming prior VLA baselines in both task success rate and interaction naturalness.

Optimizing Return Distributions with Distributional Dynamic Programming

We introduce distributional dynamic programming (DP) methods for optimizing statistical functionals of the return distribution, with standard reinforcement learning as a special case. Previous distributional DP methods could optimize the same class of expected utilities as classic DP. To go beyond expected utilities, we combine distributional DP with stock augmentation, a technique previously introduced for classic DP in the context of risk-sensitive RL, where the MDP state is augmented with a statistic of the rewards obtained so far (since the first time step). We find that a number of recently studied problems can be formulated as stock-augmented return distribution optimization, and we show that we can use distributional DP to solve them. We analyze distributional value and policy iteration, with bounds and a study of what objectives these distributional DP methods can or cannot optimize. We describe a number of applications outlining how to use distributional DP to solve different stock-augmented return distribution optimization problems, for example maximizing conditional value-at-risk, and homeostatic regulation. To highlight the practical potential of stock-augmented return distribution optimization and distributional DP, we combine the core ideas of distributional value iteration with the deep RL agent DQN, and empirically evaluate it for solving instances of the applications discussed.

DynaSaur: Large Language Agents Beyond Predefined Actions

Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in https://github.com/adobe-research/dynasaur{https://github.com/adobe-research/dynasaur}.

Safe & Accurate at Speed with Tendons: A Robot Arm for Exploring Dynamic Motion

Operating robots precisely and at high speeds has been a long-standing goal of robotics research. Balancing these competing demands is key to enabling the seamless collaboration of robots and humans and increasing task performance. However, traditional motor-driven systems often fall short in this balancing act. Due to their rigid and often heavy design exacerbated by positioning the motors into the joints, faster motions of such robots transfer high forces at impact. To enable precise and safe dynamic motions, we introduce a four degree-of-freedom~(DoF) tendon-driven robot arm. Tendons allow placing the actuation at the base to reduce the robot's inertia, which we show significantly reduces peak collision forces compared to conventional robots with motors placed near the joints. Pairing our robot with pneumatic muscles allows generating high forces and highly accelerated motions, while benefiting from impact resilience through passive compliance. Since tendons are subject to additional friction and hence prone to wear and tear, we validate the reliability of our robotic arm on various experiments, including long-term dynamic motions. We also demonstrate its ease of control by quantifying the nonlinearities of the system and the performance on a challenging dynamic table tennis task learned from scratch using reinforcement learning. We open-source the entire hardware design, which can be largely 3D printed, the control software, and a proprioceptive dataset of 25 days of diverse robot motions at webdav.tuebingen.mpg.de/pamy2.

Scalable Video Object Segmentation with Simplified Framework

The current popular methods for video object segmentation (VOS) implement feature matching through several hand-crafted modules that separately perform feature extraction and matching. However, the above hand-crafted designs empirically cause insufficient target interaction, thus limiting the dynamic target-aware feature learning in VOS. To tackle these limitations, this paper presents a scalable Simplified VOS (SimVOS) framework to perform joint feature extraction and matching by leveraging a single transformer backbone. Specifically, SimVOS employs a scalable ViT backbone for simultaneous feature extraction and matching between query and reference features. This design enables SimVOS to learn better target-ware features for accurate mask prediction. More importantly, SimVOS could directly apply well-pretrained ViT backbones (e.g., MAE) for VOS, which bridges the gap between VOS and large-scale self-supervised pre-training. To achieve a better performance-speed trade-off, we further explore within-frame attention and propose a new token refinement module to improve the running speed and save computational cost. Experimentally, our SimVOS achieves state-of-the-art results on popular video object segmentation benchmarks, i.e., DAVIS-2017 (88.0% J&F), DAVIS-2016 (92.9% J&F) and YouTube-VOS 2019 (84.2% J&F), without applying any synthetic video or BL30K pre-training used in previous VOS approaches.

Control of Medical Digital Twins with Artificial Neural Networks

The objective of personalized medicine is to tailor interventions to an individual patient's unique characteristics. A key technology for this purpose involves medical digital twins, computational models of human biology that can be personalized and dynamically updated to incorporate patient-specific data collected over time. Certain aspects of human biology, such as the immune system, are not easily captured with physics-based models, such as differential equations. Instead, they are often multi-scale, stochastic, and hybrid. This poses a challenge to existing model-based control and optimization approaches that cannot be readily applied to such models. Recent advances in automatic differentiation and neural-network control methods hold promise in addressing complex control problems. However, the application of these approaches to biomedical systems is still in its early stages. This work introduces dynamics-informed neural-network controllers as an alternative approach to control of medical digital twins. As a first use case for this method, the focus is on agent-based models, a versatile and increasingly common modeling platform in biomedicine. The effectiveness of the proposed neural-network control method is illustrated and benchmarked against other methods with two widely-used agent-based model types. The relevance of the method introduced here extends beyond medical digital twins to other complex dynamical systems.

COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically for Model-Based RL

Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration using current policy for dynamics model learning. However, due to the complex real-world environment, it is inevitable to learn an imperfect dynamics model with model prediction error, which can further mislead policy learning and result in sub-optimal solutions. In this paper, we propose COPlanner, a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem with conservative model rollouts and optimistic environment exploration. COPlanner leverages an uncertainty-aware policy-guided model predictive control (UP-MPC) component to plan for multi-step uncertainty estimation. This estimated uncertainty then serves as a penalty during model rollouts and as a bonus during real environment exploration respectively, to choose actions. Consequently, COPlanner can avoid model uncertain regions through conservative model rollouts, thereby alleviating the influence of model error. Simultaneously, it explores high-reward model uncertain regions to reduce model error actively through optimistic real environment exploration. COPlanner is a plug-and-play framework that can be applied to any dyna-style model-based methods. Experimental results on a series of proprioceptive and visual continuous control tasks demonstrate that both sample efficiency and asymptotic performance of strong model-based methods are significantly improved combined with COPlanner.

Dynamic Evaluation of Large Language Models by Meta Probing Agents

Evaluation of large language models (LLMs) has raised great concerns in the community due to the issue of data contamination. Existing work designed evaluation protocols using well-defined algorithms for specific tasks, which cannot be easily extended to diverse scenarios. Moreover, current evaluation benchmarks can only provide the overall benchmark results and cannot support a fine-grained and multifaceted analysis of LLMs' abilities. In this paper, we propose meta probing agents (MPA), a general dynamic evaluation protocol inspired by psychometrics to evaluate LLMs. MPA is the key component of DyVal 2, which naturally extends the previous DyVal~zhu2023dyval. MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory on three basic cognitive abilities: language understanding, problem solving, and domain knowledge. These basic abilities are also dynamically configurable, allowing multifaceted analysis. We conducted extensive evaluations using MPA and found that most LLMs achieve poorer performance, indicating room for improvement. Our multifaceted analysis demonstrated the strong correlation between the basic abilities and an implicit Matthew effect on model size, i.e., larger models possess stronger correlations of the abilities. MPA can also be used as a data augmentation approach to enhance LLMs. Code is available at: https://github.com/microsoft/promptbench.

Subgoal-based Hierarchical Reinforcement Learning for Multi-Agent Collaboration

Recent advancements in reinforcement learning have made significant impacts across various domains, yet they often struggle in complex multi-agent environments due to issues like algorithm instability, low sampling efficiency, and the challenges of exploration and dimensionality explosion. Hierarchical reinforcement learning (HRL) offers a structured approach to decompose complex tasks into simpler sub-tasks, which is promising for multi-agent settings. This paper advances the field by introducing a hierarchical architecture that autonomously generates effective subgoals without explicit constraints, enhancing both flexibility and stability in training. We propose a dynamic goal generation strategy that adapts based on environmental changes. This method significantly improves the adaptability and sample efficiency of the learning process. Furthermore, we address the critical issue of credit assignment in multi-agent systems by synergizing our hierarchical architecture with a modified QMIX network, thus improving overall strategy coordination and efficiency. Comparative experiments with mainstream reinforcement learning algorithms demonstrate the superior convergence speed and performance of our approach in both single-agent and multi-agent environments, confirming its effectiveness and flexibility in complex scenarios. Our code is open-sourced at: https://github.com/SICC-Group/GMAH.

RAT: Adversarial Attacks on Deep Reinforcement Agents for Targeted Behaviors

Evaluating deep reinforcement learning (DRL) agents against targeted behavior attacks is critical for assessing their robustness. These attacks aim to manipulate the victim into specific behaviors that align with the attacker's objectives, often bypassing traditional reward-based defenses. Prior methods have primarily focused on reducing cumulative rewards; however, rewards are typically too generic to capture complex safety requirements effectively. As a result, focusing solely on reward reduction can lead to suboptimal attack strategies, particularly in safety-critical scenarios where more precise behavior manipulation is needed. To address these challenges, we propose RAT, a method designed for universal, targeted behavior attacks. RAT trains an intention policy that is explicitly aligned with human preferences, serving as a precise behavioral target for the adversary. Concurrently, an adversary manipulates the victim's policy to follow this target behavior. To enhance the effectiveness of these attacks, RAT dynamically adjusts the state occupancy measure within the replay buffer, allowing for more controlled and effective behavior manipulation. Our empirical results on robotic simulation tasks demonstrate that RAT outperforms existing adversarial attack algorithms in inducing specific behaviors. Additionally, RAT shows promise in improving agent robustness, leading to more resilient policies. We further validate RAT by guiding Decision Transformer agents to adopt behaviors aligned with human preferences in various MuJoCo tasks, demonstrating its effectiveness across diverse tasks.