Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMedusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads
The inference process in Large Language Models (LLMs) is often limited due to the absence of parallelism in the auto-regressive decoding process, resulting in most operations being restricted by the memory bandwidth of accelerators. While methods such as speculative decoding have been suggested to address this issue, their implementation is impeded by the challenges associated with acquiring and maintaining a separate draft model. In this paper, we present Medusa, an efficient method that augments LLM inference by adding extra decoding heads to predict multiple subsequent tokens in parallel. Using a tree-based attention mechanism, Medusa constructs multiple candidate continuations and verifies them simultaneously in each decoding step. By leveraging parallel processing, Medusa introduces only minimal overhead in terms of single-step latency while substantially reducing the number of decoding steps required. We present two levels of fine-tuning procedures for Medusa to meet the needs of different use cases: Medusa-1: Medusa is directly fine-tuned on top of a frozen backbone LLM, enabling lossless inference acceleration. Medusa-2: Medusa is fine-tuned together with the backbone LLM, enabling better prediction accuracy of Medusa heads and higher speedup but needing a special training recipe that preserves the backbone model's capabilities. Moreover, we propose several extensions that improve or expand the utility of Medusa, including a self-distillation to handle situations where no training data is available and a typical acceptance scheme to boost the acceptance rate while maintaining generation quality. We evaluate Medusa on models of various sizes and training procedures. Our experiments demonstrate that Medusa-1 can achieve over 2.2x speedup without compromising generation quality, while Medusa-2 further improves the speedup to 2.3-3.6x.
It's Never Too Late: Fusing Acoustic Information into Large Language Models for Automatic Speech Recognition
Recent studies have successfully shown that large language models (LLMs) can be successfully used for generative error correction (GER) on top of the automatic speech recognition (ASR) output. Specifically, an LLM is utilized to carry out a direct mapping from the N-best hypotheses list generated by an ASR system to the predicted output transcription. However, despite its effectiveness, GER introduces extra data uncertainty since the LLM is trained without taking into account acoustic information available in the speech signal. In this work, we aim to overcome such a limitation by infusing acoustic information before generating the predicted transcription through a novel late fusion solution termed Uncertainty-Aware Dynamic Fusion (UADF). UADF is a multimodal fusion approach implemented into an auto-regressive decoding process and works in two stages: (i) It first analyzes and calibrates the token-level LLM decision, and (ii) it then dynamically assimilates the information from the acoustic modality. Experimental evidence collected from various ASR tasks shows that UADF surpasses existing fusion mechanisms in several ways. It yields significant improvements in word error rate (WER) while mitigating data uncertainty issues in LLM and addressing the poor generalization relied with sole modality during fusion. We also demonstrate that UADF seamlessly adapts to audio-visual speech recognition.
FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only Quantization for LLMs
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment due to their substantial memory requirements. Furthermore, the latest generative models suffer from high inference costs caused by the memory bandwidth bottleneck in the auto-regressive decoding process. To address these issues, we propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs. To ensure minimal quality degradation, we introduce a simple and effective heuristic approach that utilizes only the model weights of a pre-trained model. This approach is applicable to both Mixture-of-Experts (MoE) and dense models without requiring additional fine-tuning. To demonstrate the effectiveness of our proposed method, we first analyze the challenges and issues associated with LLM quantization. Subsequently, we present our heuristic approach, which adaptively finds the granularity of quantization, effectively addressing these problems. Furthermore, we implement highly efficient GPU GEMMs that perform on-the-fly matrix multiplication and dequantization, supporting the multiplication of fp16 or bf16 activations with int8 or int4 weights. We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput on the same number of GPUs.
Collaborative Decoding Makes Visual Auto-Regressive Modeling Efficient
In the rapidly advancing field of image generation, Visual Auto-Regressive (VAR) modeling has garnered considerable attention for its innovative next-scale prediction approach. This paradigm offers substantial improvements in efficiency, scalability, and zero-shot generalization. Yet, the inherently coarse-to-fine nature of VAR introduces a prolonged token sequence, leading to prohibitive memory consumption and computational redundancies. To address these bottlenecks, we propose Collaborative Decoding (CoDe), a novel efficient decoding strategy tailored for the VAR framework. CoDe capitalizes on two critical observations: the substantially reduced parameter demands at larger scales and the exclusive generation patterns across different scales. Based on these insights, we partition the multi-scale inference process into a seamless collaboration between a large model and a small model. The large model serves as the 'drafter', specializing in generating low-frequency content at smaller scales, while the smaller model serves as the 'refiner', solely focusing on predicting high-frequency details at larger scales. This collaboration yields remarkable efficiency with minimal impact on quality: CoDe achieves a 1.7x speedup, slashes memory usage by around 50%, and preserves image quality with only a negligible FID increase from 1.95 to 1.98. When drafting steps are further decreased, CoDe can achieve an impressive 2.9x acceleration ratio, reaching 41 images/s at 256x256 resolution on a single NVIDIA 4090 GPU, while preserving a commendable FID of 2.27. The code is available at https://github.com/czg1225/CoDe
Distilled Decoding 1: One-step Sampling of Image Auto-regressive Models with Flow Matching
Autoregressive (AR) models have achieved state-of-the-art performance in text and image generation but suffer from slow generation due to the token-by-token process. We ask an ambitious question: can a pre-trained AR model be adapted to generate outputs in just one or two steps? If successful, this would significantly advance the development and deployment of AR models. We notice that existing works that try to speed up AR generation by generating multiple tokens at once fundamentally cannot capture the output distribution due to the conditional dependencies between tokens, limiting their effectiveness for few-step generation. To address this, we propose Distilled Decoding (DD), which uses flow matching to create a deterministic mapping from Gaussian distribution to the output distribution of the pre-trained AR model. We then train a network to distill this mapping, enabling few-step generation. DD doesn't need the training data of the original AR model, making it more practical.We evaluate DD on state-of-the-art image AR models and present promising results on ImageNet-256. For VAR, which requires 10-step generation, DD enables one-step generation (6.3times speed-up), with an acceptable increase in FID from 4.19 to 9.96. For LlamaGen, DD reduces generation from 256 steps to 1, achieving an 217.8times speed-up with a comparable FID increase from 4.11 to 11.35. In both cases, baseline methods completely fail with FID>100. DD also excels on text-to-image generation, reducing the generation from 256 steps to 2 for LlamaGen with minimal FID increase from 25.70 to 28.95. As the first work to demonstrate the possibility of one-step generation for image AR models, DD challenges the prevailing notion that AR models are inherently slow, and opens up new opportunities for efficient AR generation. The project website is at https://imagination-research.github.io/distilled-decoding.
Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding
Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.
FastDraft: How to Train Your Draft
Speculative Decoding has gained popularity as an effective technique for accelerating the auto-regressive inference process of Large Language Models (LLMs). However, Speculative Decoding entirely relies on the availability of efficient draft models, which are often lacking for many existing language models due to a stringent constraint of vocabulary incompatibility. In this work we introduce FastDraft, a novel and efficient approach for pre-training and aligning a draft model to any large language model by incorporating efficient pre-training, followed by fine-tuning over synthetic datasets generated by the target model. We demonstrate FastDraft by training two highly parameter efficient drafts for the popular Phi-3-mini and Llama-3.1-8B models. Using FastDraft, we were able to produce a draft with approximately 10 billion tokens on a single server with 8 Intel^circledR Gaudi^circledR 2 accelerators in under 24 hours. Our results show that the draft model achieves impressive results in key metrics of acceptance rate, block efficiency and up to 3x memory bound speed up when evaluated on code completion and up to 2x in summarization, text completion and instruction tasks. We validate our theoretical findings through benchmarking on the latest Intel^circledR Core^{tiny TM} Ultra, achieving a wall-clock time speedup of up to 2x, indicating a significant reduction in runtime. Due to its high quality, FastDraft unlocks large language models inference on AI-PC and other edge-devices.
GEAR: An Efficient KV Cache Compression Recipefor Near-Lossless Generative Inference of LLM
Key-value (KV) caching has become the de-facto to accelerate generation speed for large language models (LLMs) inference. However, the growing cache demand with increasing sequence length has transformed LLM inference to be a memory bound problem, significantly constraining the system throughput. Existing methods rely on dropping unimportant tokens or quantizing all entries uniformly. Such methods, however, often incur high approximation errors to represent the compressed matrices. The autoregressive decoding process further compounds the error of each step, resulting in critical deviation in model generation and deterioration of performance. To tackle this challenge, we propose GEAR, an efficient KV cache compression framework that achieves near-lossless high-ratio compression. GEAR first applies quantization to majority of entries of similar magnitudes to ultra-low precision. It then employs a low rank matrix to approximate the quantization error, and a sparse matrix to remedy individual errors from outlier entries. By adeptly integrating three techniques, GEAR is able to fully exploit their synergistic potentials. Our experiments demonstrate that compared to alternatives, GEAR achieves near-lossless 4-bit KV cache compression with up to 2.38x throughput improvement, while reducing peak-memory size up to 2.29x. Our code is publicly available at https://github.com/HaoKang-Timmy/GEAR.
Sign Language Translation with Iterative Prototype
This paper presents IP-SLT, a simple yet effective framework for sign language translation (SLT). Our IP-SLT adopts a recurrent structure and enhances the semantic representation (prototype) of the input sign language video via an iterative refinement manner. Our idea mimics the behavior of human reading, where a sentence can be digested repeatedly, till reaching accurate understanding. Technically, IP-SLT consists of feature extraction, prototype initialization, and iterative prototype refinement. The initialization module generates the initial prototype based on the visual feature extracted by the feature extraction module. Then, the iterative refinement module leverages the cross-attention mechanism to polish the previous prototype by aggregating it with the original video feature. Through repeated refinement, the prototype finally converges to a more stable and accurate state, leading to a fluent and appropriate translation. In addition, to leverage the sequential dependence of prototypes, we further propose an iterative distillation loss to compress the knowledge of the final iteration into previous ones. As the autoregressive decoding process is executed only once in inference, our IP-SLT is ready to improve various SLT systems with acceptable overhead. Extensive experiments are conducted on public benchmarks to demonstrate the effectiveness of the IP-SLT.
MotionLM: Multi-Agent Motion Forecasting as Language Modeling
Reliable forecasting of the future behavior of road agents is a critical component to safe planning in autonomous vehicles. Here, we represent continuous trajectories as sequences of discrete motion tokens and cast multi-agent motion prediction as a language modeling task over this domain. Our model, MotionLM, provides several advantages: First, it does not require anchors or explicit latent variable optimization to learn multimodal distributions. Instead, we leverage a single standard language modeling objective, maximizing the average log probability over sequence tokens. Second, our approach bypasses post-hoc interaction heuristics where individual agent trajectory generation is conducted prior to interactive scoring. Instead, MotionLM produces joint distributions over interactive agent futures in a single autoregressive decoding process. In addition, the model's sequential factorization enables temporally causal conditional rollouts. The proposed approach establishes new state-of-the-art performance for multi-agent motion prediction on the Waymo Open Motion Dataset, ranking 1st on the interactive challenge leaderboard.
When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized Large Language Models
Autoregressive Large Language Models (LLMs) have achieved impressive performance in language tasks but face two significant bottlenecks: (1) quadratic complexity in the attention module as the number of tokens increases, and (2) limited efficiency due to the sequential processing nature of autoregressive LLMs during generation. While linear attention and speculative decoding offer potential solutions, their applicability and synergistic potential for enhancing autoregressive LLMs remain uncertain. We conduct the first comprehensive study on the efficacy of existing linear attention methods for autoregressive LLMs, integrating them with speculative decoding. We introduce an augmentation technique for linear attention that ensures compatibility with speculative decoding, enabling more efficient training and serving of LLMs. Extensive experiments and ablation studies involving seven existing linear attention models and five encoder/decoder-based LLMs consistently validate the effectiveness of our augmented linearized LLMs. Notably, our approach achieves up to a 6.67 reduction in perplexity on the LLaMA model and up to a 2times speedup during generation compared to prior linear attention methods. Codes and models are available at https://github.com/GATECH-EIC/Linearized-LLM.
Fast and Robust Early-Exiting Framework for Autoregressive Language Models with Synchronized Parallel Decoding
To tackle the high inference latency exhibited by autoregressive language models, previous studies have proposed an early-exiting framework that allocates adaptive computation paths for each token based on the complexity of generating the subsequent token. However, we observed several shortcomings, including performance degradation caused by a state copying mechanism or numerous exit paths, and sensitivity to exit confidence thresholds. Consequently, we propose a Fast and Robust Early-Exiting (FREE) framework, which incorporates a shallow-deep module and a synchronized parallel decoding. Our framework enables faster inference by synchronizing the decoding process of the current token with previously stacked early-exited tokens. Furthermore, as parallel decoding allows us to observe predictions from both shallow and deep models, we present a novel adaptive threshold estimator that exploits a Beta mixture model to determine suitable confidence thresholds. We empirically demonstrated the superiority of our proposed framework on extensive generation tasks.
ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer
The recent surge of interest in comprehensive multimodal models has necessitated the unification of diverse modalities. However, the unification suffers from disparate methodologies. Continuous visual generation necessitates the full-sequence diffusion-based approach, despite its divergence from the autoregressive modeling in the text domain. We posit that autoregressive modeling, i.e., predicting the future based on past deterministic experience, remains crucial in developing both a visual generation model and a potential unified multimodal model. In this paper, we explore an interpolation between the autoregressive modeling and full-parameters diffusion to model visual information. At its core, we present ACDiT, an Autoregressive blockwise Conditional Diffusion Transformer, where the block size of diffusion, i.e., the size of autoregressive units, can be flexibly adjusted to interpolate between token-wise autoregression and full-sequence diffusion. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We verify the effectiveness of ACDiT on image and video generation tasks. We also demonstrate that benefitted from autoregressive modeling, ACDiT can be seamlessly used in visual understanding tasks despite being trained on the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. These strengths make it promising as the backbone of future unified models.
Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
Efficient inference in large language models (LLMs) has become a critical focus as their scale and complexity grow. Traditional autoregressive decoding, while effective, suffers from computational inefficiencies due to its sequential token generation process. Speculative decoding addresses this bottleneck by introducing a two-stage framework: drafting and verification. A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model. This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches. We discuss key ideas associated with each method, highlighting their potential for scaling LLM inference. This survey aims to guide future research in optimizing speculative decoding and its integration into real-world LLM applications.
Break the Sequential Dependency of LLM Inference Using Lookahead Decoding
Autoregressive decoding of large language models (LLMs) is memory bandwidth bounded, resulting in high latency and significant wastes of the parallel processing power of modern accelerators. Existing methods for accelerating LLM decoding often require a draft model (e.g., speculative decoding), which is nontrivial to obtain and unable to generalize. In this paper, we introduce Lookahead decoding, an exact, parallel decoding algorithm that accelerates LLM decoding without needing auxiliary models or data stores. It allows trading per-step log(FLOPs) to reduce the number of total decoding steps, is more parallelizable on single or multiple modern accelerators, and is compatible with concurrent memory-efficient attention (e.g., FlashAttention). Our implementation of Lookahead decoding can speed up autoregressive decoding by up to 1.8x on MT-bench and 4x with strong scaling on multiple GPUs in code completion tasks. Our code is avialable at https://github.com/hao-ai-lab/LookaheadDecoding
Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration
Large language models (LLMs) have recently shown remarkable performance across a wide range of tasks. However, the substantial number of parameters in LLMs contributes to significant latency during model inference. This is particularly evident when utilizing autoregressive decoding methods, which generate one token in a single forward process, thereby not fully capitalizing on the parallel computing capabilities of GPUs. In this paper, we propose a novel parallel decoding approach, namely hidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass. The idea is to transfer the intermediate hidden states of the previous context to the pseudo hidden states of the future tokens to be generated, and then the pseudo hidden states will pass the following transformer layers thereby assimilating more semantic information and achieving superior predictive accuracy of the future tokens. Besides, we use the novel tree attention mechanism to simultaneously generate and verify multiple candidates of output sequences, which ensure the lossless generation and further improves the generation efficiency of our method. Experiments demonstrate the effectiveness of our method. We conduct a lot of analytic experiments to prove our motivation. In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding
The current large auto-regressive models can generate high-quality, high-resolution images, but these models require hundreds or even thousands of steps of next-token prediction during inference, resulting in substantial time consumption. In existing studies, Jacobi decoding, an iterative parallel decoding algorithm, has been used to accelerate the auto-regressive generation and can be executed without training. However, the Jacobi decoding relies on a deterministic criterion to determine the convergence of iterations. Thus, it works for greedy decoding but is incompatible with sampling-based decoding which is crucial for visual quality and diversity in the current auto-regressive text-to-image generation. In this paper, we propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding and allowing the model to generate diverse images. Specifically, SJD facilitates the model to predict multiple tokens at each step and accepts tokens based on the probabilistic criterion, enabling the model to generate images with fewer steps than the conventional next-token-prediction paradigm. We also investigate the token initialization strategies that leverage the spatial locality of visual data to further improve the acceleration ratio under specific scenarios. We conduct experiments for our proposed SJD on multiple auto-regressive text-to-image generation models, showing the effectiveness of model acceleration without sacrificing the visual quality.
LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding
Auto-Regressive (AR) models have recently gained prominence in image generation, often matching or even surpassing the performance of diffusion models. However, one major limitation of AR models is their sequential nature, which processes tokens one at a time, slowing down generation compared to models like GANs or diffusion-based methods that operate more efficiently. While speculative decoding has proven effective for accelerating LLMs by generating multiple tokens in a single forward, its application in visual AR models remains largely unexplored. In this work, we identify a challenge in this setting, which we term token selection ambiguity, wherein visual AR models frequently assign uniformly low probabilities to tokens, hampering the performance of speculative decoding. To overcome this challenge, we propose a relaxed acceptance condition referred to as LANTERN that leverages the interchangeability of tokens in latent space. This relaxation restores the effectiveness of speculative decoding in visual AR models by enabling more flexible use of candidate tokens that would otherwise be prematurely rejected. Furthermore, by incorporating a total variation distance bound, we ensure that these speed gains are achieved without significantly compromising image quality or semantic coherence. Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding. In specific, compared to a na\"ive application of the state-of-the-art speculative decoding, LANTERN increases speed-ups by 1.75times and 1.76times, as compared to greedy decoding and random sampling, respectively, when applied to LlamaGen, a contemporary visual AR model.
Self-Infilling Code Generation
This work introduces a general code generation framework that incorporates infilling operations into auto-regressive decoding. Our approach capitalizes on the observation that recent code language models with infilling capabilities can perform self-infilling: whereas infilling operations aim to fill in the middle based on a predefined prefix and suffix, self-infilling sequentially generates both such surrounding context and the infilled content. We utilize this feature to develop an infilling-augmented decoding process that facilitates non-monotonic generation. This approach allows for postponing the generation of uncertain code snippets until a definitive suffix is established, leading to improved control over the generation sequence. In addition, it facilitates a looping mechanism, which can iteratively update and synchronize each piece of generation in a cyclic manner. Extensive experiments are conducted to demonstrate that our proposed decoding process is effective in enhancing regularity and quality across several code generation benchmarks.
Object Recognition as Next Token Prediction
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at https://github.com/kaiyuyue/nxtp
Autoregressive Image Generation with Randomized Parallel Decoding
We introduce ARPG, a novel visual autoregressive model that enables randomized parallel generation, addressing the inherent limitations of conventional raster-order approaches, which hinder inference efficiency and zero-shot generalization due to their sequential, predefined token generation order. Our key insight is that effective random-order modeling necessitates explicit guidance for determining the position of the next predicted token. To this end, we propose a novel guided decoding framework that decouples positional guidance from content representation, encoding them separately as queries and key-value pairs. By directly incorporating this guidance into the causal attention mechanism, our approach enables fully random-order training and generation, eliminating the need for bidirectional attention. Consequently, ARPG readily generalizes to zero-shot tasks such as image inpainting, outpainting, and resolution expansion. Furthermore, it supports parallel inference by concurrently processing multiple queries using a shared KV cache. On the ImageNet-1K 256 benchmark, our approach attains an FID of 1.94 with only 64 sampling steps, achieving over a 20-fold increase in throughput while reducing memory consumption by over 75% compared to representative recent autoregressive models at a similar scale.
Blockwise Parallel Decoding for Deep Autoregressive Models
Deep autoregressive sequence-to-sequence models have demonstrated impressive performance across a wide variety of tasks in recent years. While common architecture classes such as recurrent, convolutional, and self-attention networks make different trade-offs between the amount of computation needed per layer and the length of the critical path at training time, generation still remains an inherently sequential process. To overcome this limitation, we propose a novel blockwise parallel decoding scheme in which we make predictions for multiple time steps in parallel then back off to the longest prefix validated by a scoring model. This allows for substantial theoretical improvements in generation speed when applied to architectures that can process output sequences in parallel. We verify our approach empirically through a series of experiments using state-of-the-art self-attention models for machine translation and image super-resolution, achieving iteration reductions of up to 2x over a baseline greedy decoder with no loss in quality, or up to 7x in exchange for a slight decrease in performance. In terms of wall-clock time, our fastest models exhibit real-time speedups of up to 4x over standard greedy decoding.
φ-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation
Inference-time optimization scales computation to derive deliberate reasoning steps for effective performance. While previous search-based strategies address the short-sightedness of auto-regressive generation, the vast search space leads to excessive exploration and insufficient exploitation. To strike an efficient balance to derive the optimal step, we frame the decoding strategy as foresight sampling, leveraging simulated future steps to obtain globally optimal step estimation. Built on it, we propose a novel decoding strategy, named phi-Decoding. To provide a precise and expressive estimation of step value, phi-Decoding approximates two distributions via foresight and clustering. Sampling from the joint distribution, the optimal steps can be selected for exploitation. To support adaptive computation allocation, we propose in-width and in-depth pruning strategies, featuring a light-weight solution to achieve inference efficiency. Extensive experiments across seven benchmarks show phi-Decoding outperforms strong baselines in both performance and efficiency. Additional analysis demonstrates its generalization across various LLMs and scalability across a wide range of computing budgets. The code will be released at https://github.com/xufangzhi/phi-Decoding, and the open-source PyPI package is coming soon.
LiveSpeech: Low-Latency Zero-shot Text-to-Speech via Autoregressive Modeling of Audio Discrete Codes
Prior works have demonstrated zero-shot text-to-speech by using a generative language model on audio tokens obtained via a neural audio codec. It is still challenging, however, to adapt them to low-latency scenarios. In this paper, we present LiveSpeech - a fully autoregressive language model-based approach for zero-shot text-to-speech, enabling low-latency streaming of the output audio. To allow multiple token prediction within a single decoding step, we propose (1) using adaptive codebook loss weights that consider codebook contribution in each frame and focus on hard instances, and (2) grouping codebooks and processing groups in parallel. Experiments show our proposed models achieve competitive results to state-of-the-art baselines in terms of content accuracy, speaker similarity, audio quality, and inference speed while being suitable for low-latency streaming applications.
Autoregressive Large Language Models are Computationally Universal
We show that autoregressive decoding of a transformer-based language model can realize universal computation, without external intervention or modification of the model's weights. Establishing this result requires understanding how a language model can process arbitrarily long inputs using a bounded context. For this purpose, we consider a generalization of autoregressive decoding where, given a long input, emitted tokens are appended to the end of the sequence as the context window advances. We first show that the resulting system corresponds to a classical model of computation, a Lag system, that has long been known to be computationally universal. By leveraging a new proof, we show that a universal Turing machine can be simulated by a Lag system with 2027 production rules. We then investigate whether an existing large language model can simulate the behaviour of such a universal Lag system. We give an affirmative answer by showing that a single system-prompt can be developed for gemini-1.5-pro-001 that drives the model, under deterministic (greedy) decoding, to correctly apply each of the 2027 production rules. We conclude that, by the Church-Turing thesis, prompted gemini-1.5-pro-001 with extended autoregressive (greedy) decoding is a general purpose computer.
Adaptive Draft-Verification for Efficient Large Language Model Decoding
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context, where each token is predicted one at a time using the model's learned probabilities. The typical autoregressive decoding method requires a separate forward pass through the model for each token generated, which is computationally inefficient and poses challenges for deploying LLMs in latency-sensitive scenarios. The main limitations of current decoding methods stem from their inefficiencies and resource demands. Existing approaches either necessitate fine-tuning smaller models, which is resource-intensive, or rely on fixed retrieval schemes to construct drafts for the next tokens, which lack adaptability and fail to generalize across different models and contexts. To address these issues, we introduce a novel methodology called ADED, which accelerates LLM decoding without requiring fine-tuning. Our approach involves an adaptive draft-verification process that evolves over time to improve efficiency. We utilize a tri-gram matrix-based LLM representation to dynamically approximate the output distribution of the LLM, allowing the model to adjust to changing token probabilities during the decoding process. Additionally, we implement a draft construction mechanism that effectively balances exploration and exploitation, ensuring that the drafts generated are both diverse and close to the true output distribution of the LLM. The importance of this design lies in its ability to optimize the draft distribution adaptively, leading to faster and more accurate decoding. Through extensive experiments on various benchmark datasets and LLM architectures, we demonstrate that ADED significantly accelerates the decoding process while maintaining high accuracy, making it suitable for deployment in a wide range of practical applications.
Decoding-based Regression
Language models have recently been shown capable of performing regression tasks wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal auto-regressive sequence models when they are applied to any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoding-based regression is as performant as traditional approaches for tabular regression tasks, while being flexible enough to capture arbitrary distributions, such as in the task of density estimation.
Ouroboros: Speculative Decoding with Large Model Enhanced Drafting
Drafting-then-verifying decoding methods such as speculative decoding are widely adopted training-free methods to accelerate the inference of large language models (LLMs). Instead of employing an autoregressive process to decode tokens sequentially, speculative decoding initially creates drafts with an efficient small model. Then LLMs are required to conduct verification and correction in a non-autoregressive fashion to minimize time overhead. Generating longer drafts can lead to even more significant speedups once verified, but also incurs substantial trial and error costs if it fails. Suffering from the high verification failure probability, existing decoding methods cannot draft too much content for verification at one time, achieving sub-optimal inference acceleration. In this paper, we introduce Ouroboros, which constructs a phrase candidate pool from the verification process of LLMs to provide candidates for draft generation of the small model. Thereby, Ouroboros can further improve the efficiency and effectiveness of the initial drafts. The experimental results on typical text generation tasks show that Ouroboros achieves speedups of up to 1.9x and 2.8x compared to lookahead decoding and speculative decoding, respectively. The source code of Ouroboros is available at https://github.com/thunlp/Ouroboros.
Momentum Decoding: Open-ended Text Generation As Graph Exploration
Open-ended text generation with autoregressive language models (LMs) is one of the core tasks in natural language processing. However, maximization-based decoding methods (e.g., greedy/beam search) often lead to the degeneration problem, i.e., the generated text is unnatural and contains undesirable repetitions. Existing solutions to this problem either introduce randomness prone to incoherence or require a look-ahead mechanism that demands extra computational overhead. In this study, we formulate open-ended text generation from a new perspective, i.e., we view it as an exploration process within a directed graph. Thereby, we understand the phenomenon of degeneration as circular loops within the directed graph. Based on our formulation, we propose a novel decoding method -- momentum decoding -- which encourages the LM to greedily explore new nodes outside the current graph. Meanwhile, it also allows the LM to return to the existing nodes with a momentum downgraded by a pre-defined resistance function. We extensively test our approach on three benchmarks from different domains through automatic and human evaluations. The results show that momentum decoding performs comparably with the current state of the art while enjoying notably improved inference speed and computation FLOPs. Furthermore, we conduct a detailed analysis to reveal the merits and inner workings of our approach. Our codes and other related resources are publicly available at https://github.com/gmftbyGMFTBY/MomentumDecoding.
Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose Smart Parallel Auto-Correct dEcoding (SPACE), an innovative approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
SAM Decoding: Speculative Decoding via Suffix Automaton
Large Language Models (LLMs) have revolutionized natural language processing by unifying tasks into text generation, yet their large parameter sizes and autoregressive nature limit inference speed. SAM-Decoding addresses this by introducing a novel retrieval-based speculative decoding method that uses a suffix automaton for efficient and accurate draft generation. Unlike n-gram matching used by the existing method, SAM-Decoding finds the longest suffix match in generating text and text corpuss, achieving an average time complexity of O(1) per generation step. SAM-Decoding constructs static and dynamic suffix automatons for the text corpus and input prompts, respectively, enabling fast and precise draft generation. Meanwhile, it is designed as an approach that can be combined with existing methods, allowing SAM-Decoding to adaptively select a draft generation strategy based on the matching length, thus increasing the inference speed of the LLM. When combined with Token Recycling, evaluations show SAM-Decoding outperforms existing model-free methods, achieving a speedup of 2.27times over autoregressive decoding on Spec-Bench. When combined with EAGLE2, it reaches a speedup of 2.49times, surpassing all current approaches. Our code is available at https://github.com/hyx1999/SAM-Decoding.
DuoDecoding: Hardware-aware Heterogeneous Speculative Decoding with Dynamic Multi-Sequence Drafting
Large language models (LLMs) exhibit exceptional performance across a wide range of tasks; however, their token-by-token autoregressive generation process significantly hinders inference speed. Speculative decoding presents a promising draft-then-verify framework that reduces generation latency while maintaining output distribution fidelity. Nevertheless, the draft model introduces additional computational overhead, becoming a performance bottleneck and increasing the time to first token (TTFT). Previous approaches to mitigate draft model overhead have primarily relied on heuristics and generally failed to match the quality of the draft language models. To address these challenges, we propose DuoDecoding, a novel approach that strategically deploys the draft and target models on the CPU and GPU respectively, enabling parallel decoding while preserving draft quality. Our method incorporates a hardware-aware optimal draft budget to minimize idle times and employs dynamic multi-sequence drafting to enhance draft quality. Extensive experiments across seven tasks show that DuoDecoding achieves up to 2.61x speedup in generation latency, while reducing TTFT to 83% of that in conventional speculative decoding. The Code is available at https://github.com/KaiLv69/DuoDecoding.
Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding
While Large Language Models (LLMs) have shown remarkable abilities, they are hindered by significant resource consumption and considerable latency due to autoregressive processing. In this study, we introduce Adaptive N-gram Parallel Decoding (ANPD), an innovative and lossless approach that accelerates inference by allowing the simultaneous generation of multiple tokens. ANPD incorporates a two-stage approach: it begins with a rapid drafting phase that employs an N-gram module, which adapts based on the current interactive context, followed by a verification phase, during which the original LLM assesses and confirms the proposed tokens. Consequently, ANPD preserves the integrity of the LLM's original output while enhancing processing speed. We further leverage a multi-level architecture for the N-gram module to enhance the precision of the initial draft, consequently reducing inference latency. ANPD eliminates the need for retraining or extra GPU memory, making it an efficient and plug-and-play enhancement. In our experiments, models such as LLaMA and its fine-tuned variants have shown speed improvements up to 3.67x, validating the effectiveness of our proposed ANPD.
EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
Auto-regressive decoding makes the inference of Large Language Models (LLMs) time-consuming. We propose a simple framework, EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), for lossless acceleration. Unlike traditional speculative sampling methods, EAGLE operates the drafting process auto-regressively at the more regular (second-top-layer) feature level and addresses the sampling uncertainty issues in the next-feature prediction problems by integrating tokens from one time step ahead. The acceleration provided by EAGLE is lossless: it involves no fine-tuning of the target LLM, and the generated text maintains the same distribution as that of vanilla auto-regressive decoding. As of the submission of this paper, EAGLE is the fastest known framework within the speculative sampling family. On MT-bench, EAGLE is 3x faster than vanilla decoding, 2x faster than Lookahead, and 1.6x faster than Medusa. Using gpt-fast, EAGLE attains on average 160 tokens/s with LLaMA2-Chat 13B on a single RTX 3090 GPU, compared to 24 tokens/s of Huggingface's implementations.
Discrete Diffusion Language Model for Long Text Summarization
While diffusion models excel at conditional generating high-quality images, prior works in discrete diffusion models were not evaluated on conditional long-text generation. In this work, we address the limitations of prior discrete diffusion models for conditional long-text generation, particularly in long sequence-to-sequence tasks such as abstractive summarization. Despite fast decoding speeds compared to autoregressive methods, previous diffusion models failed on the abstractive summarization task due to the incompatibility between the backbone architectures and the random noising process. To overcome these challenges, we introduce a novel semantic-aware noising process that enables Transformer backbones to handle long sequences effectively. Additionally, we propose CrossMamba, an adaptation of the Mamba model to the encoder-decoder paradigm, which integrates seamlessly with the random absorbing noising process. Our approaches achieve state-of-the-art performance on three benchmark summarization datasets: Gigaword, CNN/DailyMail, and Arxiv, outperforming existing discrete diffusion models on ROUGE metrics as well as possessing much faster speed in inference compared to autoregressive models.
Unlocking Efficiency in Large Language Model Inference: A Comprehensive Survey of Speculative Decoding
To mitigate the high inference latency stemming from autoregressive decoding in Large Language Models (LLMs), Speculative Decoding has emerged as a novel decoding paradigm for LLM inference. In each decoding step, this method first efficiently drafts several future tokens and then verifies them in parallel. Unlike autoregressive decoding, Speculative Decoding facilitates the simultaneous decoding of multiple tokens per step, thereby accelerating inference. This paper presents a comprehensive overview and analysis of this promising decoding paradigm. We begin by providing a formal definition and formulation of Speculative Decoding. Then, we organize in-depth discussions on its key facets, including current leading techniques, the challenges faced, and potential future directions in this field. We aim for this work to serve as a catalyst for further research on Speculative Decoding, ultimately contributing to more efficient LLM inference.
Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens
Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their widespread application is hindered by the resource-intensive decoding process. To address this challenge, current approaches have incorporated additional decoding heads to enable parallel prediction of multiple subsequent tokens, thereby achieving inference acceleration. Nevertheless, the accuracy of these decoding heads falls short of the auto-regressive decoding approach. In light of these limitations, we propose Chimera, a novel framework specifically designed for speculative sampling. Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words. To ensure both accuracy and efficiency, we present two strategies within the lightweight draft model. Firstly, we focus on capturing short-range dependencies at the bottom layer. Secondly, we leverage the readily available representations from the original LLM.Through empirical evaluation on the Vicuna and LlaMA-2 series, Chimera demonstrates impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach. This highlights the potential of our proposed framework in significantly improving the efficiency of large language models during the decoding process.
Speculative Decoding and Beyond: An In-Depth Survey of Techniques
Sequential dependencies present a fundamental bottleneck in deploying large-scale autoregressive models, particularly for real-time applications. While traditional optimization approaches like pruning and quantization often compromise model quality, recent advances in generation-refinement frameworks demonstrate that this trade-off can be significantly mitigated. This survey presents a comprehensive taxonomy of generation-refinement frameworks, analyzing methods across autoregressive sequence tasks. We categorize methods based on their generation strategies (from simple n-gram prediction to sophisticated draft models) and refinement mechanisms (including single-pass verification and iterative approaches). Through systematic analysis of both algorithmic innovations and system-level implementations, we examine deployment strategies across computing environments and explore applications spanning text, images, and speech generation. This systematic examination of both theoretical frameworks and practical implementations provides a foundation for future research in efficient autoregressive decoding.
OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
Diffusion Guided Language Modeling
Current language models demonstrate remarkable proficiency in text generation. However, for many applications it is desirable to control attributes, such as sentiment, or toxicity, of the generated language -- ideally tailored towards each specific use case and target audience. For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance. In contrast, text diffusion models can easily be guided with, for example, a simple linear sentiment classifier -- however they do suffer from significantly higher perplexity than auto-regressive alternatives. In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties. Our model inherits the unmatched fluency of the auto-regressive approach and the plug-and-play flexibility of diffusion. We show that it outperforms previous plug-and-play guidance methods across a wide range of benchmark data sets. Further, controlling a new attribute in our framework is reduced to training a single logistic regression classifier.
End-to-End Non-Autoregressive Neural Machine Translation with Connectionist Temporal Classification
Autoregressive decoding is the only part of sequence-to-sequence models that prevents them from massive parallelization at inference time. Non-autoregressive models enable the decoder to generate all output symbols independently in parallel. We present a novel non-autoregressive architecture based on connectionist temporal classification and evaluate it on the task of neural machine translation. Unlike other non-autoregressive methods which operate in several steps, our model can be trained end-to-end. We conduct experiments on the WMT English-Romanian and English-German datasets. Our models achieve a significant speedup over the autoregressive models, keeping the translation quality comparable to other non-autoregressive models.
"Principal Components" Enable A New Language of Images
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space. While existing visual tokenizers primarily optimize for reconstruction fidelity, they often neglect the structural properties of the latent space -- a critical factor for both interpretability and downstream tasks. Our method generates a 1D causal token sequence for images, where each successive token contributes non-overlapping information with mathematically guaranteed decreasing explained variance, analogous to principal component analysis. This structural constraint ensures the tokenizer extracts the most salient visual features first, with each subsequent token adding diminishing yet complementary information. Additionally, we identified and resolved a semantic-spectrum coupling effect that causes the unwanted entanglement of high-level semantic content and low-level spectral details in the tokens by leveraging a diffusion decoder. Experiments demonstrate that our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system. Moreover, auto-regressive models trained on our token sequences achieve performance comparable to current state-of-the-art methods while requiring fewer tokens for training and inference.
Hydra: Sequentially-Dependent Draft Heads for Medusa Decoding
To combat the memory bandwidth-bound nature of autoregressive LLM inference, previous research has proposed the speculative decoding framework. To perform speculative decoding, a small draft model proposes candidate continuations of the input sequence, that are then verified in parallel by the base model. One way to specify the draft model, as used in the recent Medusa decoding framework, is as a collection of light-weight heads, called draft heads, that operate on the base model's hidden states. To date, all existing draft heads have been sequentially independent, meaning that they speculate tokens in the candidate continuation independently of any preceding tokens in the candidate continuation. In this work, we propose Hydra heads, a sequentially dependent, drop-in replacement for standard draft heads that significantly improves speculation accuracy. Decoding with Hydra heads improves throughput compared to Medusa decoding with standard draft heads. We further explore the design space of Hydra head training objectives and architectures, and propose a carefully-tuned Hydra head recipe, which we call Hydra++, that improves decoding throughput by 1.31x and 2.71x compared to Medusa decoding and autoregressive decoding, respectively. Overall, Hydra heads are a simple intervention on standard draft heads that significantly improve the end-to-end speed of draft head based speculative decoding.
Accelerating Transformer Inference for Translation via Parallel Decoding
Autoregressive decoding limits the efficiency of transformers for Machine Translation (MT). The community proposed specific network architectures and learning-based methods to solve this issue, which are expensive and require changes to the MT model, trading inference speed at the cost of the translation quality. In this paper, we propose to address the problem from the point of view of decoding algorithms, as a less explored but rather compelling direction. We propose to reframe the standard greedy autoregressive decoding of MT with a parallel formulation leveraging Jacobi and Gauss-Seidel fixed-point iteration methods for fast inference. This formulation allows to speed up existing models without training or modifications while retaining translation quality. We present three parallel decoding algorithms and test them on different languages and models showing how the parallelization introduces a speedup up to 38% w.r.t. the standard autoregressive decoding and nearly 2x when scaling the method on parallel resources. Finally, we introduce a decoding dependency graph visualizer (DDGviz) that let us see how the model has learned the conditional dependence between tokens and inspect the decoding procedure.
ZipAR: Accelerating Autoregressive Image Generation through Spatial Locality
In this paper, we propose ZipAR, a training-free, plug-and-play parallel decoding framework for accelerating auto-regressive (AR) visual generation. The motivation stems from the observation that images exhibit local structures, and spatially distant regions tend to have minimal interdependence. Given a partially decoded set of visual tokens, in addition to the original next-token prediction scheme in the row dimension, the tokens corresponding to spatially adjacent regions in the column dimension can be decoded in parallel, enabling the ``next-set prediction'' paradigm. By decoding multiple tokens simultaneously in a single forward pass, the number of forward passes required to generate an image is significantly reduced, resulting in a substantial improvement in generation efficiency. Experiments demonstrate that ZipAR can reduce the number of model forward passes by up to 91% on the Emu3-Gen model without requiring any additional retraining.
Cascaded Text Generation with Markov Transformers
The two dominant approaches to neural text generation are fully autoregressive models, using serial beam search decoding, and non-autoregressive models, using parallel decoding with no output dependencies. This work proposes an autoregressive model with sub-linear parallel time generation. Noting that conditional random fields with bounded context can be decoded in parallel, we propose an efficient cascaded decoding approach for generating high-quality output. To parameterize this cascade, we introduce a Markov transformer, a variant of the popular fully autoregressive model that allows us to simultaneously decode with specific autoregressive context cutoffs. This approach requires only a small modification from standard autoregressive training, while showing competitive accuracy/speed tradeoff compared to existing methods on five machine translation datasets.
TraDE: Transformers for Density Estimation
We present TraDE, a self-attention-based architecture for auto-regressive density estimation with continuous and discrete valued data. Our model is trained using a penalized maximum likelihood objective, which ensures that samples from the density estimate resemble the training data distribution. The use of self-attention means that the model need not retain conditional sufficient statistics during the auto-regressive process beyond what is needed for each covariate. On standard tabular and image data benchmarks, TraDE produces significantly better density estimates than existing approaches such as normalizing flow estimators and recurrent auto-regressive models. However log-likelihood on held-out data only partially reflects how useful these estimates are in real-world applications. In order to systematically evaluate density estimators, we present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data and demonstrate that TraDE works well in these scenarios.
Superposed Decoding: Multiple Generations from a Single Autoregressive Inference Pass
Many applications today provide users with multiple auto-complete drafts as they type, including GitHub's code completion, Gmail's smart compose, and Apple's messaging auto-suggestions. Under the hood, language models support this by running an autoregressive inference pass to provide a draft. Consequently, providing k drafts to the user requires running an expensive language model k times. To alleviate the computation cost of running k inference passes, we propose Superposed Decoding, a new decoding algorithm that generates k drafts at the computation cost of one autoregressive inference pass. We achieve this by feeding a superposition of the most recent token embeddings from the k drafts as input to the next decoding step of the language model. At every inference step we combine the k drafts with the top-k tokens to get k^2 new drafts and cache the k most likely options, using an n-gram interpolation with minimal compute overhead to filter out incoherent generations. Our experiments show that k drafts from Superposed Decoding are at least as coherent and factual as Nucleus Sampling and Greedy Decoding respectively, while being at least 2.44times faster for kge3. In a compute-normalized setting, user evaluations demonstrably favor text generated by Superposed Decoding over Nucleus Sampling. Code and more examples open-sourced at https://github.com/RAIVNLab/SuperposedDecoding.
ParallelSpec: Parallel Drafter for Efficient Speculative Decoding
Speculative decoding has proven to be an efficient solution to large language model (LLM) inference, where the small drafter predicts future tokens at a low cost, and the target model is leveraged to verify them in parallel. However, most existing works still draft tokens auto-regressively to maintain sequential dependency in language modeling, which we consider a huge computational burden in speculative decoding. We present ParallelSpec, an alternative to auto-regressive drafting strategies in state-of-the-art speculative decoding approaches. In contrast to auto-regressive drafting in the speculative stage, we train a parallel drafter to serve as an efficient speculative model. ParallelSpec learns to efficiently predict multiple future tokens in parallel using a single model, and it can be integrated into any speculative decoding framework that requires aligning the output distributions of the drafter and the target model with minimal training cost. Experimental results show that ParallelSpec accelerates baseline methods in latency up to 62% on text generation benchmarks from different domains, and it achieves 2.84X overall speedup on the Llama-2-13B model using third-party evaluation criteria.
Neighboring Autoregressive Modeling for Efficient Visual Generation
Visual autoregressive models typically adhere to a raster-order ``next-token prediction" paradigm, which overlooks the spatial and temporal locality inherent in visual content. Specifically, visual tokens exhibit significantly stronger correlations with their spatially or temporally adjacent tokens compared to those that are distant. In this paper, we propose Neighboring Autoregressive Modeling (NAR), a novel paradigm that formulates autoregressive visual generation as a progressive outpainting procedure, following a near-to-far ``next-neighbor prediction" mechanism. Starting from an initial token, the remaining tokens are decoded in ascending order of their Manhattan distance from the initial token in the spatial-temporal space, progressively expanding the boundary of the decoded region. To enable parallel prediction of multiple adjacent tokens in the spatial-temporal space, we introduce a set of dimension-oriented decoding heads, each predicting the next token along a mutually orthogonal dimension. During inference, all tokens adjacent to the decoded tokens are processed in parallel, substantially reducing the model forward steps for generation. Experiments on ImageNet256times 256 and UCF101 demonstrate that NAR achieves 2.4times and 8.6times higher throughput respectively, while obtaining superior FID/FVD scores for both image and video generation tasks compared to the PAR-4X approach. When evaluating on text-to-image generation benchmark GenEval, NAR with 0.8B parameters outperforms Chameleon-7B while using merely 0.4 of the training data. Code is available at https://github.com/ThisisBillhe/NAR.
Deep Encoder, Shallow Decoder: Reevaluating Non-autoregressive Machine Translation
Much recent effort has been invested in non-autoregressive neural machine translation, which appears to be an efficient alternative to state-of-the-art autoregressive machine translation on modern GPUs. In contrast to the latter, where generation is sequential, the former allows generation to be parallelized across target token positions. Some of the latest non-autoregressive models have achieved impressive translation quality-speed tradeoffs compared to autoregressive baselines. In this work, we reexamine this tradeoff and argue that autoregressive baselines can be substantially sped up without loss in accuracy. Specifically, we study autoregressive models with encoders and decoders of varied depths. Our extensive experiments show that given a sufficiently deep encoder, a single-layer autoregressive decoder can substantially outperform strong non-autoregressive models with comparable inference speed. We show that the speed disadvantage for autoregressive baselines compared to non-autoregressive methods has been overestimated in three aspects: suboptimal layer allocation, insufficient speed measurement, and lack of knowledge distillation. Our results establish a new protocol for future research toward fast, accurate machine translation. Our code is available at https://github.com/jungokasai/deep-shallow.
Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference
The auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance. While recent research has investigated various speculative decoding techniques for multi-token generation, these efforts have primarily focused on improving processing speed such as throughput. Crucially, they often neglect other metrics essential for real-life deployments, such as memory consumption and training cost. To overcome these limitations, we propose a novel parallel prompt decoding that requires only 0.0002% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours. Inspired by the human natural language generation process, PPD approximates outputs generated at future timesteps in parallel by using multiple prompt tokens. This approach partially recovers the missing conditional dependency information necessary for multi-token generation, resulting in up to a 28% higher acceptance rate for long-range predictions. Furthermore, we present a hardware-aware dynamic sparse tree technique that adaptively optimizes this decoding scheme to fully leverage the computational capacities on different GPUs. Through extensive experiments across LLMs ranging from MobileLlama to Vicuna-13B on a wide range of benchmarks, our approach demonstrates up to 2.49times speedup and maintains a minimal runtime memory overhead of just 0.0004%. More importantly, our parallel prompt decoding can serve as an orthogonal optimization for synergistic integration with existing speculative decoding, showing up to 1.22times further speed improvement. Our code is available at https://github.com/hmarkc/parallel-prompt-decoding.
AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation
Diffusion models have gained significant attention in the realm of image generation due to their exceptional performance. Their success has been recently expanded to text generation via generating all tokens within a sequence concurrently. However, natural language exhibits a far more pronounced sequential dependency in comparison to images, and the majority of existing language models are trained utilizing a left-to-right auto-regressive approach. To account for the inherent sequential characteristic of natural language, we introduce Auto-Regressive Diffusion (AR-Diffusion). AR-Diffusion ensures that the generation of tokens on the right depends on the generated ones on the left, a mechanism achieved through employing a dynamic number of denoising steps that vary based on token position. This results in tokens on the left undergoing fewer denoising steps than those on the right, thereby enabling them to generate earlier and subsequently influence the generation of tokens on the right. In a series of experiments on various text generation tasks including text summarization, machine translation, and common sense generation, AR-Diffusion clearly demonstrated the superiority over existing diffusion language models and that it can be 100timessim600times faster when achieving comparable results. Our code will be publicly released.
ARM: Efficient Guided Decoding with Autoregressive Reward Models
Language models trained on large amounts of data require careful tuning to be safely deployed in real world. We revisit the guided decoding paradigm, where the goal is to augment the logits of the base language model using the scores from a task-specific reward model. We propose a simple but efficient parameterization of the autoregressive reward model enabling fast and effective guided decoding. On detoxification and sentiment control tasks, we show that our efficient parameterization performs on par with RAD, a strong but less efficient guided decoding approach.
Improving Autoregressive Image Generation through Coarse-to-Fine Token Prediction
Autoregressive models have shown remarkable success in image generation by adapting sequential prediction techniques from language modeling. However, applying these approaches to images requires discretizing continuous pixel data through vector quantization methods like VQ-VAE. To alleviate the quantization errors that existed in VQ-VAE, recent works tend to use larger codebooks. However, this will accordingly expand vocabulary size, complicating the autoregressive modeling task. This paper aims to find a way to enjoy the benefits of large codebooks without making autoregressive modeling more difficult. Through empirical investigation, we discover that tokens with similar codeword representations produce similar effects on the final generated image, revealing significant redundancy in large codebooks. Based on this insight, we propose to predict tokens from coarse to fine (CTF), realized by assigning the same coarse label for similar tokens. Our framework consists of two stages: (1) an autoregressive model that sequentially predicts coarse labels for each token in the sequence, and (2) an auxiliary model that simultaneously predicts fine-grained labels for all tokens conditioned on their coarse labels. Experiments on ImageNet demonstrate our method's superior performance, achieving an average improvement of 59 points in Inception Score compared to baselines. Notably, despite adding an inference step, our approach achieves faster sampling speeds.
SpecTr: Fast Speculative Decoding via Optimal Transport
Autoregressive sampling from large language models has led to state-of-the-art results in several natural language tasks. However, autoregressive sampling generates tokens one at a time making it slow, and even prohibitive in certain tasks. One way to speed up sampling is speculative decoding: use a small model to sample a draft (block or sequence of tokens), and then score all tokens in the draft by the large language model in parallel. A subset of the tokens in the draft are accepted (and the rest rejected) based on a statistical method to guarantee that the final output follows the distribution of the large model. In this work, we provide a principled understanding of speculative decoding through the lens of optimal transport (OT) with membership cost. This framework can be viewed as an extension of the well-known maximal-coupling problem. This new formulation enables us to generalize the speculative decoding method to allow for a set of k candidates at the token-level, which leads to an improved optimal membership cost. We show that the optimal draft selection algorithm (transport plan) can be computed via linear programming, whose best-known runtime is exponential in k. We then propose a valid draft selection algorithm whose acceptance probability is (1-1/e)-optimal multiplicatively. Moreover, it can be computed in time almost linear with size of domain of a single token. Using this new draft selection algorithm, we develop a new autoregressive sampling algorithm called SpecTr, which provides speedup in decoding while ensuring that there is no quality degradation in the decoded output. We experimentally demonstrate that for state-of-the-art large language models, the proposed approach achieves a wall clock speedup of 2.13X, a further 1.37X speedup over speculative decoding on standard benchmarks.
MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling
Recent advancements in multi-modal large language models have propelled the development of joint probabilistic models capable of both image understanding and generation. However, we have identified that recent methods inevitably suffer from loss of image information during understanding task, due to either image discretization or diffusion denoising steps. To address this issue, we propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework. Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss. Differing from diffusion-based approaches, we disentangle the diffusion process from auto-regressive backbone model by employing a light-weight diffusion head on top each auto-regressed image patch embedding. In this way, when the model transits from image generation to understanding through text generation, the backbone model's hidden representation of the image is not limited to the last denoising step. To successfully train our method, we also propose a theoretically proven technique that addresses the numerical stability issue and a training strategy that balances the generation and understanding task goals. Through extensive evaluations on 18 image understanding benchmarks, MMAR demonstrates much more superior performance than other joint multi-modal models, matching the method that employs pretrained CLIP vision encoder, meanwhile being able to generate high quality images at the same time. We also showed that our method is scalable with larger data and model size.
Continuous Speculative Decoding for Autoregressive Image Generation
Continuous-valued Autoregressive (AR) image generation models have demonstrated notable superiority over their discrete-token counterparts, showcasing considerable reconstruction quality and higher generation fidelity. However, the computational demands of the autoregressive framework result in significant inference overhead. While speculative decoding has proven effective in accelerating Large Language Models (LLMs), their adaptation to continuous-valued visual autoregressive models remains unexplored. This work generalizes the speculative decoding algorithm from discrete tokens to continuous space. By analyzing the intrinsic properties of output distribution, we establish a tailored acceptance criterion for the diffusion distributions prevalent in such models. To overcome the inconsistency that occurred in speculative decoding output distributions, we introduce denoising trajectory alignment and token pre-filling methods. Additionally, we identify the hard-to-sample distribution in the rejection phase. To mitigate this issue, we propose a meticulous acceptance-rejection sampling method with a proper upper bound, thereby circumventing complex integration. Experimental results show that our continuous speculative decoding achieves a remarkable 2.33times speed-up on off-the-shelf models while maintaining the output distribution. Codes will be available at https://github.com/MarkXCloud/CSpD
Open-MAGVIT2: An Open-Source Project Toward Democratizing Auto-regressive Visual Generation
We present Open-MAGVIT2, a family of auto-regressive image generation models ranging from 300M to 1.5B. The Open-MAGVIT2 project produces an open-source replication of Google's MAGVIT-v2 tokenizer, a tokenizer with a super-large codebook (i.e., 2^{18} codes), and achieves the state-of-the-art reconstruction performance (1.17 rFID) on ImageNet 256 times 256. Furthermore, we explore its application in plain auto-regressive models and validate scalability properties. To assist auto-regressive models in predicting with a super-large vocabulary, we factorize it into two sub-vocabulary of different sizes by asymmetric token factorization, and further introduce "next sub-token prediction" to enhance sub-token interaction for better generation quality. We release all models and codes to foster innovation and creativity in the field of auto-regressive visual generation.
CodeFusion: A Pre-trained Diffusion Model for Code Generation
Imagine a developer who can only change their last line of code, how often would they have to start writing a function from scratch before it is correct? Auto-regressive models for code generation from natural language have a similar limitation: they do not easily allow reconsidering earlier tokens generated. We introduce CodeFusion, a pre-trained diffusion code generation model that addresses this limitation by iteratively denoising a complete program conditioned on the encoded natural language. We evaluate CodeFusion on the task of natural language to code generation for Bash, Python, and Microsoft Excel conditional formatting (CF) rules. Experiments show that CodeFusion (75M parameters) performs on par with state-of-the-art auto-regressive systems (350M-175B parameters) in top-1 accuracy and outperforms them in top-3 and top-5 accuracy due to its better balance in diversity versus quality.
Fast Inference from Transformers via Speculative Decoding
Inference from large autoregressive models like Transformers is slow - decoding K tokens takes K serial runs of the model. In this work we introduce speculative decoding - an algorithm to sample from autoregressive models faster without any changes to the outputs, by computing several tokens in parallel. At the heart of our approach lie the observations that (1) hard language-modeling tasks often include easier subtasks that can be approximated well by more efficient models, and (2) using speculative execution and a novel sampling method, we can make exact decoding from the large models faster, by running them in parallel on the outputs of the approximation models, potentially generating several tokens concurrently, and without changing the distribution. Our method can accelerate existing off-the-shelf models without retraining or architecture changes. We demonstrate it on T5-XXL and show a 2X-3X acceleration compared to the standard T5X implementation, with identical outputs.
LLM can Achieve Self-Regulation via Hyperparameter Aware Generation
In the realm of Large Language Models (LLMs), users commonly employ diverse decoding strategies and adjust hyperparameters to control the generated text. However, a critical question emerges: Are LLMs conscious of the existence of these decoding strategies and capable of regulating themselves? The current decoding generation process often relies on empirical and heuristic manual adjustments to hyperparameters based on types of tasks and demands. However, this process is typically cumbersome, and the decoding hyperparameters may not always be optimal for each sample. To address the aforementioned challenges, we propose a novel text generation paradigm termed Hyperparameter Aware Generation (HAG). By leveraging hyperparameter-aware instruction tuning, the LLM autonomously determines the optimal decoding strategy and configs based on the input samples, enabling self-regulation. Our approach eliminates the need for extensive manual tuning, offering a more autonomous, self-regulate model behavior. Experimental results spanning six datasets across reasoning, creativity, translation, and mathematics tasks demonstrate that hyperparameter-aware instruction tuning empowers the LLMs to self-regulate the decoding strategy and hyperparameter. HAG extends the current paradigm in the text generation process, highlighting the feasibility of endowing the LLMs with self-regulate decoding strategies.
Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism
The recent advancements in large language models (LLMs) have been extraordinary, yet the escalating inference costs associated with them present challenges in real-world applications. To address these challenges, we propose a novel approach called Early-exiting Speculative Decoding (EESD) with lossless acceleration. Specifically, EESD utilizes a segment of the LLM to generate draft tokens, incorporating Early-exiting structures after the first N layers. To enhance the quality of draft tokens, a self-distillation method is integrated. This early-exiting design not only reduces deployment and training costs but also significantly accelerates the token generation speed. Moreover, we introduce a novel sampling mechanism that leverages Thompson Sampling to regulate the generation processes, automatically determining the quantity of draft tokens in each round. The original LLM is then employed to validate these draft tokens through a single forward pass, and thus guarantees that the final output text maintains a distribution consistent with vanilla auto-regressive decoding. The experimental results on both 13B and 70B models demonstrate that our approach decodes tokens at a markedly accelerated rate compared to prior methods, showing the effectiveness of our approach.
Vector-Quantized Autoregressive Predictive Coding
Autoregressive Predictive Coding (APC), as a self-supervised objective, has enjoyed success in learning representations from large amounts of unlabeled data, and the learned representations are rich for many downstream tasks. However, the connection between low self-supervised loss and strong performance in downstream tasks remains unclear. In this work, we propose Vector-Quantized Autoregressive Predictive Coding (VQ-APC), a novel model that produces quantized representations, allowing us to explicitly control the amount of information encoded in the representations. By studying a sequence of increasingly limited models, we reveal the constituents of the learned representations. In particular, we confirm the presence of information with probing tasks, while showing the absence of information with mutual information, uncovering the model's preference in preserving speech information as its capacity becomes constrained. We find that there exists a point where phonetic and speaker information are amplified to maximize a self-supervised objective. As a byproduct, the learned codes for a particular model capacity correspond well to English phones.
Context Perception Parallel Decoder for Scene Text Recognition
Scene text recognition (STR) methods have struggled to attain high accuracy and fast inference speed. Autoregressive (AR)-based models implement the recognition in a character-by-character manner, showing superiority in accuracy but with slow inference speed. Alternatively, parallel decoding (PD)-based models infer all characters in a single decoding pass, offering faster inference speed but generally worse accuracy. We first present an empirical study of AR decoding in STR, and discover that the AR decoder not only models linguistic context, but also provides guidance on visual context perception. Consequently, we propose Context Perception Parallel Decoder (CPPD) to predict the character sequence in a PD pass. CPPD devises a character counting module to infer the occurrence count of each character, and a character ordering module to deduce the content-free reading order and placeholders. Meanwhile, the character prediction task associates the placeholders with characters. They together build a comprehensive recognition context. We construct a series of CPPD models and also plug the proposed modules into existing STR decoders. Experiments on both English and Chinese benchmarks demonstrate that the CPPD models achieve highly competitive accuracy while running approximately 8x faster than their AR-based counterparts. Moreover, the plugged models achieve significant accuracy improvements. Code is at https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/algorithm_rec_cppd_en.md{this https URL}.
AutoTimes: Autoregressive Time Series Forecasters via Large Language Models
Foundation models of time series have not been fully developed due to the limited availability of time series corpora and the underexploration of scalable pre-training. Based on the similar sequential formulation of time series and natural language, increasing research demonstrates the feasibility of leveraging large language models (LLM) for time series. Nevertheless, the inherent autoregressive property and decoder-only architecture of LLMs have not been fully considered, resulting in insufficient utilization of LLM abilities. To fully revitalize the general-purpose token transition and multi-step generation capability of large language models, we propose AutoTimes to repurpose LLMs as autoregressive time series forecasters, which projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths. Compatible with any decoder-only LLMs, the consequent forecaster exhibits the flexibility of the lookback length and scalability with larger LLMs. Further, we formulate time series as prompts, extending the context for prediction beyond the lookback window, termed in-context forecasting. By introducing LLM-embedded textual timestamps, AutoTimes can utilize chronological information to align multivariate time series. Empirically, AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over 5times training/inference speedup compared to advanced LLM-based forecasters. Code is available at this repository: https://github.com/thuml/AutoTimes.
LANTERN++: Enhanced Relaxed Speculative Decoding with Static Tree Drafting for Visual Auto-regressive Models
Speculative decoding has been widely used to accelerate autoregressive (AR) text generation. However, its effectiveness in visual AR models remains limited due to token selection ambiguity, where multiple tokens receive similarly low probabilities, reducing acceptance rates. While dynamic tree drafting has been proposed to improve speculative decoding, we show that it fails to mitigate token selection ambiguity, resulting in shallow draft trees and suboptimal acceleration. To address this, we introduce LANTERN++, a novel framework that integrates static tree drafting with a relaxed acceptance condition, allowing drafts to be selected independently of low-confidence predictions. This enables deeper accepted sequences, improving decoding efficiency while preserving image quality. Extensive experiments on state-of-the-art visual AR models demonstrate that LANTERN++ significantly accelerates inference, achieving up to times 2.56 speedup over standard AR decoding while maintaining high image quality.
Local Normalization Distortion and the Thermodynamic Formalism of Decoding Strategies for Large Language Models
Advances in hardware and language model architecture have spurred a revolution in natural language generation. However, autoregressive models compute probability distributions over next-token choices, and sampling from these distributions, known as decoding, has received significantly less attention than other design choices. Existing decoding strategies are largely based on heuristics, resulting in methods that are hard to apply or improve in a principled manner. We develop the theory of decoding strategies for language models by expressing popular decoding algorithms as equilibrium states in the language of ergodic theory and stating the functions they optimize. Using this, we analyze the effect of the local normalization step of top-k, nucleus, and temperature sampling, used to make probabilities sum to one. We argue that local normalization distortion is a fundamental defect of decoding strategies and quantify the size of this distortion and its effect on mathematical proxies for the quality and diversity of generated text. Contrary to the prevailing explanation, we argue that the major cause of the under-performance of top-k sampling relative to nucleus sampling is local normalization distortion. This yields conclusions for the future design of decoding algorithms and the detection of machine-generated text.
Towards Fast Inference: Exploring and Improving Blockwise Parallel Drafts
Despite the remarkable strides made by autoregressive language models, their potential is often hampered by the slow inference speeds inherent in sequential token generation. Blockwise parallel decoding (BPD) was proposed by Stern et al. (2018) as a way to improve inference speed of language models. In this paper, we make two contributions to understanding and improving BPD drafts. We first offer an analysis of the token distributions produced by the BPD prediction heads. Secondly, we use this analysis to inform algorithms to improve BPD inference speed by refining the BPD drafts using small n-gram or neural language models. We empirically show that these refined BPD drafts yield a higher average verified prefix length across tasks.
ELMER: A Non-Autoregressive Pre-trained Language Model for Efficient and Effective Text Generation
We study the text generation task under the approach of pre-trained language models (PLMs). Typically, an auto-regressive (AR) method is adopted for generating texts in a token-by-token manner. Despite many advantages of AR generation, it usually suffers from inefficient inference. Therefore, non-autoregressive (NAR) models are proposed to generate all target tokens simultaneously. However, NAR models usually generate texts of lower quality due to the absence of token dependency in the output text. In this paper, we propose ELMER: an efficient and effective PLM for NAR text generation to explicitly model the token dependency during NAR generation. By leveraging the early exit technique, ELMER enables the token generations at different layers, according to their prediction confidence (a more confident token will exit at a lower layer). Besides, we propose a novel pre-training objective, Layer Permutation Language Modeling, to pre-train ELMER by permuting the exit layer for each token in sequences. Experiments on three text generation tasks show that ELMER significantly outperforms NAR models and further narrows the performance gap with AR PLMs (\eg ELMER (29.92) vs BART (30.61) ROUGE-L in XSUM) while achieving over 10 times inference speedup.
UT5: Pretraining Non autoregressive T5 with unrolled denoising
Recent advances in Transformer-based Large Language Models have made great strides in natural language generation. However, to decode K tokens, an autoregressive model needs K sequential forward passes, which may be a performance bottleneck for large language models. Many non-autoregressive (NAR) research are aiming to address this sequentiality bottleneck, albeit many have focused on a dedicated architecture in supervised benchmarks. In this work, we studied unsupervised pretraining for non auto-regressive T5 models via unrolled denoising and shown its SoTA results in downstream generation tasks such as SQuAD question generation and XSum.
Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that popular encoding schemes, such as maximum prefix encoding (MPE) and byte-pair-encoding (BPE), induce a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, for each encoding scheme above, we propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data. Our methods do not require finetuning the model, and the complexity, defined as the number of model runs, scales linearly with the sequence length in the case of MPE. As a result, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
Auto-Regressive Next-Token Predictors are Universal Learners
Large language models display remarkable capabilities in logical and mathematical reasoning, allowing them to solve complex tasks. Interestingly, these abilities emerge in networks trained on the simple task of next-token prediction. In this work, we present a theoretical framework for studying auto-regressive next-token predictors. We demonstrate that even simple models such as linear next-token predictors, trained on Chain-of-Thought (CoT) data, can approximate any function efficiently computed by a Turing machine. We introduce a new complexity measure -- length complexity -- which measures the number of intermediate tokens in a CoT sequence required to approximate some target function, and analyze the interplay between length complexity and other notions of complexity. Finally, we show experimentally that simple next-token predictors, such as linear networks and shallow Multi-Layer Perceptrons (MLPs), display non-trivial performance on text generation and arithmetic tasks. Our results demonstrate that the power of language models can be attributed, to a great extent, to the auto-regressive next-token training scheme, and not necessarily to a particular choice of architecture.
S2D: Sorted Speculative Decoding For More Efficient Deployment of Nested Large Language Models
Deployment of autoregressive large language models (LLMs) is costly, and as these models increase in size, the associated costs will become even more considerable. Consequently, different methods have been proposed to accelerate the token generation process and reduce costs. Speculative decoding (SD) is among the most promising approaches to speed up the LLM decoding process by verifying multiple tokens in parallel and using an auxiliary smaller draft model to generate the possible tokens. In SD, usually, one draft model is used to serve a specific target model; however, in practice, LLMs are diverse, and we might need to deal with many target models or more than one target model simultaneously. In this scenario, it is not clear which draft model should be used for which target model, and searching among different draft models or training customized draft models can further increase deployment costs. In this paper, we first introduce a novel multi-target scenario for the deployment of draft models for faster inference. Then, we present a novel, more efficient sorted speculative decoding mechanism that outperforms regular baselines in multi-target settings. We evaluated our method on Spec-Bench in different settings, including base models such as Vicuna 7B, 13B, and LLama Chat 70B. Our results suggest that our draft models perform better than baselines for multiple target models at the same time.
Drop your Decoder: Pre-training with Bag-of-Word Prediction for Dense Passage Retrieval
Masked auto-encoder pre-training has emerged as a prevalent technique for initializing and enhancing dense retrieval systems. It generally utilizes additional Transformer decoder blocks to provide sustainable supervision signals and compress contextual information into dense representations. However, the underlying reasons for the effectiveness of such a pre-training technique remain unclear. The usage of additional Transformer-based decoders also incurs significant computational costs. In this study, we aim to shed light on this issue by revealing that masked auto-encoder (MAE) pre-training with enhanced decoding significantly improves the term coverage of input tokens in dense representations, compared to vanilla BERT checkpoints. Building upon this observation, we propose a modification to the traditional MAE by replacing the decoder of a masked auto-encoder with a completely simplified Bag-of-Word prediction task. This modification enables the efficient compression of lexical signals into dense representations through unsupervised pre-training. Remarkably, our proposed method achieves state-of-the-art retrieval performance on several large-scale retrieval benchmarks without requiring any additional parameters, which provides a 67% training speed-up compared to standard masked auto-encoder pre-training with enhanced decoding.
Learning How Hard to Think: Input-Adaptive Allocation of LM Computation
Computationally intensive decoding procedures--including search, reranking, and self-critique--can improve the quality of language model (LM) outputs in problems spanning code generation, numerical reasoning, and dialog. Existing work typically applies the same decoding procedure for every input to an LM. But not all inputs require the same amount of computation to process. Can we allocate decoding computation adaptively, using more resources to answer questions whose answers will be harder to compute? We present an approach that predicts the distribution of rewards given an input and computation budget, then allocates additional computation to inputs for which it is predicted to be most useful. We apply this approach in two decoding procedures: first, an adaptive best-of-k procedure that dynamically selects the number of samples to generate as input to a reranker; second, a routing procedure that dynamically responds to a query using a decoding procedure that is expensive but accurate, or one that is cheaper but less capable. Across a suite of programming, mathematics, and dialog tasks, we show that accurate computation-allocation procedures can be learned, and reduce computation by up to 50% at no cost to response quality, or improve quality by up to 10% at a fixed computational budget.
Randomized Autoregressive Visual Generation
This paper presents Randomized AutoRegressive modeling (RAR) for visual generation, which sets a new state-of-the-art performance on the image generation task while maintaining full compatibility with language modeling frameworks. The proposed RAR is simple: during a standard autoregressive training process with a next-token prediction objective, the input sequence-typically ordered in raster form-is randomly permuted into different factorization orders with a probability r, where r starts at 1 and linearly decays to 0 over the course of training. This annealing training strategy enables the model to learn to maximize the expected likelihood over all factorization orders and thus effectively improve the model's capability of modeling bidirectional contexts. Importantly, RAR preserves the integrity of the autoregressive modeling framework, ensuring full compatibility with language modeling while significantly improving performance in image generation. On the ImageNet-256 benchmark, RAR achieves an FID score of 1.48, not only surpassing prior state-of-the-art autoregressive image generators but also outperforming leading diffusion-based and masked transformer-based methods. Code and models will be made available at https://github.com/bytedance/1d-tokenizer
Clover-2: Accurate Inference for Regressive Lightweight Speculative Decoding
Large Language Models (LLMs) frequently suffer from inefficiencies, largely attributable to the discord between the requirements of auto-regressive decoding and the architecture of contemporary GPUs. Recently, regressive lightweight speculative decoding has garnered attention for its notable efficiency improvements in text generation tasks. This approach utilizes a lightweight regressive draft model, like a Recurrent Neural Network (RNN) or a single transformer decoder layer, leveraging sequential information to iteratively predict potential tokens. Specifically, RNN draft models are computationally economical but tend to deliver lower accuracy, while attention decoder layer models exhibit the opposite traits. This paper presents Clover-2, an advanced iteration of Clover, an RNN-based draft model designed to achieve comparable accuracy to that of attention decoder layer models while maintaining minimal computational overhead. Clover-2 enhances the model architecture and incorporates knowledge distillation to increase Clover's accuracy and improve overall efficiency. We conducted experiments using the open-source Vicuna 7B and LLaMA3-Instruct 8B models. The results demonstrate that Clover-2 surpasses existing methods across various model architectures, showcasing its efficacy and robustness.
ControlAR: Controllable Image Generation with Autoregressive Models
Autoregressive (AR) models have reformulated image generation as next-token prediction, demonstrating remarkable potential and emerging as strong competitors to diffusion models. However, control-to-image generation, akin to ControlNet, remains largely unexplored within AR models. Although a natural approach, inspired by advancements in Large Language Models, is to tokenize control images into tokens and prefill them into the autoregressive model before decoding image tokens, it still falls short in generation quality compared to ControlNet and suffers from inefficiency. To this end, we introduce ControlAR, an efficient and effective framework for integrating spatial controls into autoregressive image generation models. Firstly, we explore control encoding for AR models and propose a lightweight control encoder to transform spatial inputs (e.g., canny edges or depth maps) into control tokens. Then ControlAR exploits the conditional decoding method to generate the next image token conditioned on the per-token fusion between control and image tokens, similar to positional encodings. Compared to prefilling tokens, using conditional decoding significantly strengthens the control capability of AR models but also maintains the model's efficiency. Furthermore, the proposed ControlAR surprisingly empowers AR models with arbitrary-resolution image generation via conditional decoding and specific controls. Extensive experiments can demonstrate the controllability of the proposed ControlAR for the autoregressive control-to-image generation across diverse inputs, including edges, depths, and segmentation masks. Furthermore, both quantitative and qualitative results indicate that ControlAR surpasses previous state-of-the-art controllable diffusion models, e.g., ControlNet++. Code, models, and demo will soon be available at https://github.com/hustvl/ControlAR.
Lossless Acceleration for Seq2seq Generation with Aggressive Decoding
We study lossless acceleration for seq2seq generation with a novel decoding algorithm -- Aggressive Decoding. Unlike the previous efforts (e.g., non-autoregressive decoding) speeding up seq2seq generation at the cost of quality loss, our approach aims to yield the identical (or better) generation compared with autoregressive decoding but in a significant speedup, achieved by innovative cooperation of aggressive decoding and verification that are both efficient due to parallel computing. We propose two Aggressive Decoding paradigms for 2 kinds of seq2seq tasks: 1) For the seq2seq tasks whose inputs and outputs are highly similar (e.g., Grammatical Error Correction), we propose Input-guided Aggressive Decoding (IAD) that aggressively copies from the input sentence as drafted decoded tokens to verify in parallel; 2) For other general seq2seq tasks (e.g., Machine Translation), we propose Generalized Aggressive Decoding (GAD) that first employs an additional non-autoregressive decoding model for aggressive decoding and then verifies in parallel in the autoregressive manner. We test Aggressive Decoding on the most popular 6-layer Transformer model on GPU in multiple seq2seq tasks: 1) For IAD, we show that it can introduce a 7x-9x speedup for the Transformer in Grammatical Error Correction and Text Simplification tasks with the identical results as greedy decoding; 2) For GAD, we observe a 3x-5x speedup with the identical or even better quality in two important seq2seq tasks: Machine Translation and Abstractive Summarization. Moreover, Aggressive Decoding can benefit even more from stronger computing devices that are better at parallel computing. Given the lossless quality as well as significant and promising speedup, we believe Aggressive Decoding may potentially evolve into a de facto standard for efficient and lossless seq2seq generation in the near future.
Effectively Compress KV Heads for LLM
The advent of pre-trained large language models (LLMs) has revolutionized various natural language processing tasks. These models predominantly employ an auto-regressive decoding mechanism that utilizes Key-Value (KV) caches to eliminate redundant calculations for previous tokens. Nevertheless, as context lengths and batch sizes increase, the linear expansion in memory footprint of KV caches becomes a key bottleneck of LLM deployment, which decreases generation speeds significantly. To mitigate this issue, previous techniques like multi-query attention (MQA) and grouped-query attention (GQA) have been developed, in order to reduce KV heads to accelerate inference with comparable accuracy to multi-head attention (MHA). Despite their effectiveness, existing strategies for compressing MHA often overlook the intrinsic properties of the KV caches. In this work, we explore the low-rank characteristics of the KV caches and propose a novel approach for compressing KV heads. In particular, we carefully optimize the MHA-to-GQA transformation to minimize compression error, and to remain compatible with rotary position embeddings (RoPE), we also introduce specialized strategies for key caches with RoPE. We demonstrate that our method can compress half or even three-quarters of KV heads while maintaining performance comparable to the original LLMs, which presents a promising direction for more efficient LLM deployment in resource-constrained environments.
Cascade Speculative Drafting for Even Faster LLM Inference
Speculative decoding enhances the efficiency of large language models (LLMs) by leveraging a draft model to draft for a larger target model to review. However, drafting in speculative decoding involves slow autoregressive generation and generating tokens of different importance with the same time allocation. These two inefficiencies lead to its suboptimal performance. To address this issue, we introduce Cascade Speculative Drafting (CS. Drafting), a novel approach that employs two types of cascades. The Vertical Cascade eliminates autoregressive generation from neural models. The Horizontal Cascade constitutes efficient time allocation in drafting with its optimality supported by our theoretical analysis. Combining both cascades, our CS. Drafting algorithm has achieved up to 72 percent additional speedup over speculative decoding in our experiments while keeping the same output distribution.
NFIG: Autoregressive Image Generation with Next-Frequency Prediction
Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present Next-Frequency Image Generation (NFIG), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25times speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
A Contrastive Pre-training Approach to Learn Discriminative Autoencoder for Dense Retrieval
Dense retrieval (DR) has shown promising results in information retrieval. In essence, DR requires high-quality text representations to support effective search in the representation space. Recent studies have shown that pre-trained autoencoder-based language models with a weak decoder can provide high-quality text representations, boosting the effectiveness and few-shot ability of DR models. However, even a weak autoregressive decoder has the bypass effect on the encoder. More importantly, the discriminative ability of learned representations may be limited since each token is treated equally important in decoding the input texts. To address the above problems, in this paper, we propose a contrastive pre-training approach to learn a discriminative autoencoder with a lightweight multi-layer perception (MLP) decoder. The basic idea is to generate word distributions of input text in a non-autoregressive fashion and pull the word distributions of two masked versions of one text close while pushing away from others. We theoretically show that our contrastive strategy can suppress the common words and highlight the representative words in decoding, leading to discriminative representations. Empirical results show that our method can significantly outperform the state-of-the-art autoencoder-based language models and other pre-trained models for dense retrieval.
Accelerating LLM Inference with Staged Speculative Decoding
Recent advances with large language models (LLM) illustrate their diverse capabilities. We propose a novel algorithm, staged speculative decoding, to accelerate LLM inference in small-batch, on-device scenarios. We address the low arithmetic intensity of small-batch inference by improving upon previous work in speculative decoding. First, we restructure the speculative batch as a tree, which reduces generation costs and increases the expected tokens per batch. Second, we add a second stage of speculative decoding. Taken together, we reduce single-batch decoding latency by 3.16x with a 762M parameter GPT-2-L model while perfectly preserving output quality.
σ-GPTs: A New Approach to Autoregressive Models
Autoregressive models, such as the GPT family, use a fixed order, usually left-to-right, to generate sequences. However, this is not a necessity. In this paper, we challenge this assumption and show that by simply adding a positional encoding for the output, this order can be modulated on-the-fly per-sample which offers key advantageous properties. It allows for the sampling of and conditioning on arbitrary subsets of tokens, and it also allows sampling in one shot multiple tokens dynamically according to a rejection strategy, leading to a sub-linear number of model evaluations. We evaluate our method across various domains, including language modeling, path-solving, and aircraft vertical rate prediction, decreasing the number of steps required for generation by an order of magnitude.
What Regularized Auto-Encoders Learn from the Data Generating Distribution
What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of data. This paper clarifies some of these previous observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstruction function that locally characterizes the shape of the data generating density. We show that the auto-encoder captures the score (derivative of the log-density with respect to the input). It contradicts previous interpretations of reconstruction error as an energy function. Unlike previous results, the theorems provided here are completely generic and do not depend on the parametrization of the auto-encoder: they show what the auto-encoder would tend to if given enough capacity and examples. These results are for a contractive training criterion we show to be similar to the denoising auto-encoder training criterion with small corruption noise, but with contraction applied on the whole reconstruction function rather than just encoder. Similarly to score matching, one can consider the proposed training criterion as a convenient alternative to maximum likelihood because it does not involve a partition function. Finally, we show how an approximate Metropolis-Hastings MCMC can be setup to recover samples from the estimated distribution, and this is confirmed in sampling experiments.
PaSS: Parallel Speculative Sampling
Scaling the size of language models to tens of billions of parameters has led to impressive performance on a wide range of tasks. At generation, these models are used auto-regressively, requiring a forward pass for each generated token, and thus reading the full set of parameters from memory. This memory access forms the primary bottleneck for generation and it worsens as the model size increases. Moreover, executing a forward pass for multiple tokens in parallel often takes nearly the same time as it does for just one token. These two observations lead to the development of speculative sampling, where a second smaller model is used to draft a few tokens, that are then validated or rejected using a single forward pass of the large model. Unfortunately, this method requires two models that share the same tokenizer and thus limits its adoption. As an alternative, we propose to use parallel decoding as a way to draft multiple tokens from a single model with no computational cost, nor the need for a second model. Our approach only requires an additional input token that marks the words that will be generated simultaneously. We show promising performance (up to 30% speed-up) while requiring only as few as O(d_{emb}) additional parameters.
PruMUX: Augmenting Data Multiplexing with Model Compression
As language models increase in size by the day, methods for efficient inference are critical to leveraging their capabilities for various applications. Prior work has investigated techniques like model pruning, knowledge distillation, and data multiplexing to increase model throughput without sacrificing accuracy. In this paper, we combine two such methods -- structured pruning and data multiplexing -- to compound the speedup gains obtained by either method. Our approach, PruMUX, obtains up to 7.5-29.5X throughput improvement over BERT-base model with accuracy threshold from 80% to 74%. We further study various combinations of parameters (such as sparsity and multiplexing factor) in the two techniques to provide a comprehensive analysis of the tradeoff between accuracy and throughput in the resulting models. We then propose Auto-PruMUX, a meta-level model that can predict the high-performance parameters for pruning and multiplexing given a desired accuracy loss budget, providing a practical method to leverage the combination effectively.
Learning Versatile 3D Shape Generation with Improved AR Models
Auto-Regressive (AR) models have achieved impressive results in 2D image generation by modeling joint distributions in the grid space. While this approach has been extended to the 3D domain for powerful shape generation, it still has two limitations: expensive computations on volumetric grids and ambiguous auto-regressive order along grid dimensions. To overcome these limitations, we propose the Improved Auto-regressive Model (ImAM) for 3D shape generation, which applies discrete representation learning based on a latent vector instead of volumetric grids. Our approach not only reduces computational costs but also preserves essential geometric details by learning the joint distribution in a more tractable order. Moreover, thanks to the simplicity of our model architecture, we can naturally extend it from unconditional to conditional generation by concatenating various conditioning inputs, such as point clouds, categories, images, and texts. Extensive experiments demonstrate that ImAM can synthesize diverse and faithful shapes of multiple categories, achieving state-of-the-art performance.
Judge Decoding: Faster Speculative Sampling Requires Going Beyond Model Alignment
The performance of large language models (LLMs) is closely linked to their underlying size, leading to ever-growing networks and hence slower inference. Speculative decoding has been proposed as a technique to accelerate autoregressive generation, leveraging a fast draft model to propose candidate tokens, which are then verified in parallel based on their likelihood under the target model. While this approach guarantees to reproduce the target output, it incurs a substantial penalty: many high-quality draft tokens are rejected, even when they represent objectively valid continuations. Indeed, we show that even powerful draft models such as GPT-4o, as well as human text cannot achieve high acceptance rates under the standard verification scheme. This severely limits the speedup potential of current speculative decoding methods, as an early rejection becomes overwhelmingly likely when solely relying on alignment of draft and target. We thus ask the following question: Can we adapt verification to recognize correct, but non-aligned replies? To this end, we draw inspiration from the LLM-as-a-judge framework, which demonstrated that LLMs are able to rate answers in a versatile way. We carefully design a dataset to elicit the same capability in the target model by training a compact module on top of the embeddings to produce ``judgements" of the current continuation. We showcase our strategy on the Llama-3.1 family, where our 8b/405B-Judge achieves a speedup of 9x over Llama-405B, while maintaining its quality on a large range of benchmarks. These benefits remain present even in optimized inference frameworks, where our method reaches up to 141 tokens/s for 8B/70B-Judge and 129 tokens/s for 8B/405B on 2 and 8 H100s respectively.
Deconvolutional Paragraph Representation Learning
Learning latent representations from long text sequences is an important first step in many natural language processing applications. Recurrent Neural Networks (RNNs) have become a cornerstone for this challenging task. However, the quality of sentences during RNN-based decoding (reconstruction) decreases with the length of the text. We propose a sequence-to-sequence, purely convolutional and deconvolutional autoencoding framework that is free of the above issue, while also being computationally efficient. The proposed method is simple, easy to implement and can be leveraged as a building block for many applications. We show empirically that compared to RNNs, our framework is better at reconstructing and correcting long paragraphs. Quantitative evaluation on semi-supervised text classification and summarization tasks demonstrate the potential for better utilization of long unlabeled text data.
On the Power of Decision Trees in Auto-Regressive Language Modeling
Originally proposed for handling time series data, Auto-regressive Decision Trees (ARDTs) have not yet been explored for language modeling. This paper delves into both the theoretical and practical applications of ARDTs in this new context. We theoretically demonstrate that ARDTs can compute complex functions, such as simulating automata, Turing machines, and sparse circuits, by leveraging "chain-of-thought" computations. Our analysis provides bounds on the size, depth, and computational efficiency of ARDTs, highlighting their surprising computational power. Empirically, we train ARDTs on simple language generation tasks, showing that they can learn to generate coherent and grammatically correct text on par with a smaller Transformer model. Additionally, we show that ARDTs can be used on top of transformer representations to solve complex reasoning tasks. This research reveals the unique computational abilities of ARDTs, aiming to broaden the architectural diversity in language model development.
AR-Diffusion: Asynchronous Video Generation with Auto-Regressive Diffusion
The task of video generation requires synthesizing visually realistic and temporally coherent video frames. Existing methods primarily use asynchronous auto-regressive models or synchronous diffusion models to address this challenge. However, asynchronous auto-regressive models often suffer from inconsistencies between training and inference, leading to issues such as error accumulation, while synchronous diffusion models are limited by their reliance on rigid sequence length. To address these issues, we introduce Auto-Regressive Diffusion (AR-Diffusion), a novel model that combines the strengths of auto-regressive and diffusion models for flexible, asynchronous video generation. Specifically, our approach leverages diffusion to gradually corrupt video frames in both training and inference, reducing the discrepancy between these phases. Inspired by auto-regressive generation, we incorporate a non-decreasing constraint on the corruption timesteps of individual frames, ensuring that earlier frames remain clearer than subsequent ones. This setup, together with temporal causal attention, enables flexible generation of videos with varying lengths while preserving temporal coherence. In addition, we design two specialized timestep schedulers: the FoPP scheduler for balanced timestep sampling during training, and the AD scheduler for flexible timestep differences during inference, supporting both synchronous and asynchronous generation. Extensive experiments demonstrate the superiority of our proposed method, which achieves competitive and state-of-the-art results across four challenging benchmarks.
Amphista: Accelerate LLM Inference with Bi-directional Multiple Drafting Heads in a Non-autoregressive Style
Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speeds, especially when hardware parallel accelerators and memory bandwidth are not fully utilized. In this work, we propose Amphista, a speculative decoding algorithm that adheres to a non-autoregressive decoding paradigm. Owing to the increased parallelism, our method demonstrates higher efficiency in inference compared to autoregressive methods. Specifically, Amphista models an Auto-embedding Block capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista implements Staged Adaptation Layers to facilitate the transition of semantic information from the base model's autoregressive inference to the drafting heads' non-autoregressive speculation, thereby achieving paradigm transformation and feature fusion. We conduct a series of experiments on a suite of Vicuna models using MT-Bench and Spec-Bench. For the Vicuna 33B model, Amphista achieves up to 2.75times and 1.40times wall-clock acceleration compared to vanilla autoregressive decoding and Medusa, respectively, while preserving lossless generation quality.
Controlled Decoding from Language Models
We propose controlled decoding (CD), a novel off-policy reinforcement learning method to control the autoregressive generation from language models towards high reward outcomes. CD solves an off-policy reinforcement learning problem through a value function for the reward, which we call a prefix scorer. The prefix scorer is used at inference time to steer the generation towards higher reward outcomes. We show that the prefix scorer may be trained on (possibly) off-policy data to predict the expected reward when decoding is continued from a partially decoded response. We empirically demonstrate that CD is effective as a control mechanism on Reddit conversations corpus. We also show that the modularity of the design of CD makes it possible to control for multiple rewards, effectively solving a multi-objective reinforcement learning problem with no additional complexity. Finally, we show that CD can be applied in a novel blockwise fashion at inference-time, again without the need for any training-time changes, essentially bridging the gap between the popular best-of-K strategy and token-level reinforcement learning. This makes CD a promising approach for alignment of language models.
Reward-Guided Speculative Decoding for Efficient LLM Reasoning
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs). RSD synergistically combines a lightweight draft model with a more powerful target model, incorporating a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness. RSD employs a process reward model to evaluate intermediate decoding steps and dynamically decide whether to invoke the target model, optimizing the trade-off between computational cost and output quality. We theoretically demonstrate that a threshold-based mixture strategy achieves an optimal balance between resource utilization and performance. Extensive evaluations on challenging reasoning benchmarks, including Olympiad-level tasks, show that RSD delivers significant efficiency gains against decoding with the target model only (up to 4.4x fewer FLOPs), while achieving significant better accuracy than parallel decoding method on average (up to +3.5). These results highlight RSD as a robust and cost-effective approach for deploying LLMs in resource-intensive scenarios.
Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs
Large language models have demonstrated exceptional capability in natural language understanding and generation. However, their generation speed is limited by the inherently sequential nature of their decoding process, posing challenges for real-time applications. This paper introduces Lexical Unit Decoding (LUD), a novel decoding methodology implemented in a data-driven manner, accelerating the decoding process without sacrificing output quality. The core of our approach is the observation that a pre-trained language model can confidently predict multiple contiguous tokens, forming the basis for a lexical unit, in which these contiguous tokens could be decoded in parallel. Extensive experiments validate that our method substantially reduces decoding time while maintaining generation quality, i.e., 33\% speed up on natural language generation with no quality loss, and 30\% speed up on code generation with a negligible quality loss of 3\%. Distinctively, LUD requires no auxiliary models and does not require changes to existing architectures. It can also be integrated with other decoding acceleration methods, thus achieving an even more pronounced inference efficiency boost. We posit that the foundational principles of LUD could define a new decoding paradigm for future language models, enhancing their applicability for a broader spectrum of applications. All codes are be publicly available at https://github.com/tjunlp-lab/Lexical-Unit-Decoding-LUD-. Keywords: Parallel Decoding, Lexical Unit Decoding, Large Language Model
Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE
Speculative decoding (SD) accelerates large language model inference by using a smaller draft model to predict multiple tokens, which are then verified in parallel by the larger target model. However, the limited capacity of the draft model often necessitates tree-based sampling to improve prediction accuracy, where multiple candidates are generated at each step. We identify a key limitation in this approach: the candidates at the same step are derived from the same representation, limiting diversity and reducing overall effectiveness. To address this, we propose Jakiro, leveraging Mixture of Experts (MoE), where independent experts generate diverse predictions, effectively decoupling correlations among candidates. Furthermore, we introduce a hybrid inference strategy, combining autoregressive decoding for initial tokens with parallel decoding for subsequent stages, and enhance the latter with contrastive mechanism in features to improve accuracy. Our method significantly boosts prediction accuracy and achieves higher inference speedups. Extensive experiments across diverse models validate the effectiveness and robustness of our approach, establishing a new SOTA in speculative decoding. Our codes are available at https://github.com/haiduo/Jakiro.
A Comprehensive Survey of Accelerated Generation Techniques in Large Language Models
Despite the crucial importance of accelerating text generation in large language models (LLMs) for efficiently producing content, the sequential nature of this process often leads to high inference latency, posing challenges for real-time applications. Various techniques have been proposed and developed to address these challenges and improve efficiency. This paper presents a comprehensive survey of accelerated generation techniques in autoregressive language models, aiming to understand the state-of-the-art methods and their applications. We categorize these techniques into several key areas: speculative decoding, early exiting mechanisms, and non-autoregressive methods. We discuss each category's underlying principles, advantages, limitations, and recent advancements. Through this survey, we aim to offer insights into the current landscape of techniques in LLMs and provide guidance for future research directions in this critical area of natural language processing.
Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder
Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/.
Loong: Generating Minute-level Long Videos with Autoregressive Language Models
It is desirable but challenging to generate content-rich long videos in the scale of minutes. Autoregressive large language models (LLMs) have achieved great success in generating coherent and long sequences of tokens in the domain of natural language processing, while the exploration of autoregressive LLMs for video generation is limited to generating short videos of several seconds. In this work, we conduct a deep analysis of the challenges that prevent autoregressive LLM-based video generators from generating long videos. Based on the observations and analysis, we propose Loong, a new autoregressive LLM-based video generator that can generate minute-long videos. Specifically, we model the text tokens and video tokens as a unified sequence for autoregressive LLMs and train the model from scratch. We propose progressive short-to-long training with a loss re-weighting scheme to mitigate the loss imbalance problem for long video training. We further investigate inference strategies, including video token re-encoding and sampling strategies, to diminish error accumulation during inference. Our proposed Loong can be trained on 10-second videos and be extended to generate minute-level long videos conditioned on text prompts, as demonstrated by the results. More samples are available at: https://epiphqny.github.io/Loong-video.
Generative Pre-Training for Speech with Autoregressive Predictive Coding
Learning meaningful and general representations from unannotated speech that are applicable to a wide range of tasks remains challenging. In this paper we propose to use autoregressive predictive coding (APC), a recently proposed self-supervised objective, as a generative pre-training approach for learning meaningful, non-specific, and transferable speech representations. We pre-train APC on large-scale unlabeled data and conduct transfer learning experiments on three speech applications that require different information about speech characteristics to perform well: speech recognition, speech translation, and speaker identification. Extensive experiments show that APC not only outperforms surface features (e.g., log Mel spectrograms) and other popular representation learning methods on all three tasks, but is also effective at reducing downstream labeled data size and model parameters. We also investigate the use of Transformers for modeling APC and find it superior to RNNs.
On the Efficacy of Eviction Policy for Key-Value Constrained Generative Language Model Inference
Despite the recent success associated with Large Language Models (LLMs), they are notably cost-prohibitive to deploy in resource-constrained environments due to their excessive memory and computational demands. In addition to model parameters, the key-value cache is also stored in GPU memory, growing linearly with batch size and sequence length. As a remedy, recent works have proposed various eviction policies for maintaining the overhead of key-value cache under a given budget. This paper embarks on the efficacy of existing eviction policies in terms of importance score calculation and eviction scope construction. We identify the deficiency of prior policies in these two aspects and introduce RoCo, a robust cache omission policy based on temporal attention scores and robustness measures. Extensive experimentation spanning prefilling and auto-regressive decoding stages validates the superiority of RoCo. Finally, we release EasyKV, a versatile software package dedicated to user-friendly key-value constrained generative inference. Code available at https://github.com/DRSY/EasyKV.
latent-GLAT: Glancing at Latent Variables for Parallel Text Generation
Recently, parallel text generation has received widespread attention due to its success in generation efficiency. Although many advanced techniques are proposed to improve its generation quality, they still need the help of an autoregressive model for training to overcome the one-to-many multi-modal phenomenon in the dataset, limiting their applications. In this paper, we propose latent-GLAT, which employs the discrete latent variables to capture word categorical information and invoke an advanced curriculum learning technique, alleviating the multi-modality problem. Experiment results show that our method outperforms strong baselines without the help of an autoregressive model, which further broadens the application scenarios of the parallel decoding paradigm.
Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
Recent advances in image tokenizers, such as VQ-VAE, have enabled text-to-image generation using auto-regressive methods, similar to language modeling. However, these methods have yet to leverage pre-trained language models, despite their adaptability to various downstream tasks. In this work, we explore this gap by adapting a pre-trained language model for auto-regressive text-to-image generation, and find that pre-trained language models offer limited help. We provide a two-fold explanation by analyzing tokens from each modality. First, we demonstrate that image tokens possess significantly different semantics compared to text tokens, rendering pre-trained language models no more effective in modeling them than randomly initialized ones. Second, the text tokens in the image-text datasets are too simple compared to normal language model pre-training data, which causes the catastrophic degradation of language models' capability.
DiCoDe: Diffusion-Compressed Deep Tokens for Autoregressive Video Generation with Language Models
Videos are inherently temporal sequences by their very nature. In this work, we explore the potential of modeling videos in a chronological and scalable manner with autoregressive (AR) language models, inspired by their success in natural language processing. We introduce DiCoDe, a novel approach that leverages Diffusion-Compressed Deep Tokens to generate videos with a language model in an autoregressive manner. Unlike existing methods that employ low-level representations with limited compression rates, DiCoDe utilizes deep tokens with a considerable compression rate (a 1000x reduction in token count). This significant compression is made possible by a tokenizer trained through leveraging the prior knowledge of video diffusion models. Deep tokens enable DiCoDe to employ vanilla AR language models for video generation, akin to translating one visual "language" into another. By treating videos as temporal sequences, DiCoDe fully harnesses the capabilities of language models for autoregressive generation. DiCoDe is scalable using readily available AR architectures, and is capable of generating videos ranging from a few seconds to one minute using only 4 A100 GPUs for training. We evaluate DiCoDe both quantitatively and qualitatively, demonstrating that it performs comparably to existing methods in terms of quality while ensuring efficient training. To showcase its scalability, we release a series of DiCoDe configurations with varying parameter sizes and observe a consistent improvement in performance as the model size increases from 100M to 3B. We believe that DiCoDe's exploration in academia represents a promising initial step toward scalable video modeling with AR language models, paving the way for the development of larger and more powerful video generation models.
Continuous Autoregressive Models with Noise Augmentation Avoid Error Accumulation
Autoregressive models are typically applied to sequences of discrete tokens, but recent research indicates that generating sequences of continuous embeddings in an autoregressive manner is also feasible. However, such Continuous Autoregressive Models (CAMs) can suffer from a decline in generation quality over extended sequences due to error accumulation during inference. We introduce a novel method to address this issue by injecting random noise into the input embeddings during training. This procedure makes the model robust against varying error levels at inference. We further reduce error accumulation through an inference procedure that introduces low-level noise. Experiments on musical audio generation show that CAM substantially outperforms existing autoregressive and non-autoregressive approaches while preserving audio quality over extended sequences. This work paves the way for generating continuous embeddings in a purely autoregressive setting, opening new possibilities for real-time and interactive generative applications.
Scaling and evaluating sparse autoencoders
Sparse autoencoders provide a promising unsupervised approach for extracting interpretable features from a language model by reconstructing activations from a sparse bottleneck layer. Since language models learn many concepts, autoencoders need to be very large to recover all relevant features. However, studying the properties of autoencoder scaling is difficult due to the need to balance reconstruction and sparsity objectives and the presence of dead latents. We propose using k-sparse autoencoders [Makhzani and Frey, 2013] to directly control sparsity, simplifying tuning and improving the reconstruction-sparsity frontier. Additionally, we find modifications that result in few dead latents, even at the largest scales we tried. Using these techniques, we find clean scaling laws with respect to autoencoder size and sparsity. We also introduce several new metrics for evaluating feature quality based on the recovery of hypothesized features, the explainability of activation patterns, and the sparsity of downstream effects. These metrics all generally improve with autoencoder size. To demonstrate the scalability of our approach, we train a 16 million latent autoencoder on GPT-4 activations for 40 billion tokens. We release training code and autoencoders for open-source models, as well as a visualizer.
Autoregressive Models in Vision: A Survey
Autoregressive modeling has been a huge success in the field of natural language processing (NLP). Recently, autoregressive models have emerged as a significant area of focus in computer vision, where they excel in producing high-quality visual content. Autoregressive models in NLP typically operate on subword tokens. However, the representation strategy in computer vision can vary in different levels, i.e., pixel-level, token-level, or scale-level, reflecting the diverse and hierarchical nature of visual data compared to the sequential structure of language. This survey comprehensively examines the literature on autoregressive models applied to vision. To improve readability for researchers from diverse research backgrounds, we start with preliminary sequence representation and modeling in vision. Next, we divide the fundamental frameworks of visual autoregressive models into three general sub-categories, including pixel-based, token-based, and scale-based models based on the strategy of representation. We then explore the interconnections between autoregressive models and other generative models. Furthermore, we present a multi-faceted categorization of autoregressive models in computer vision, including image generation, video generation, 3D generation, and multi-modal generation. We also elaborate on their applications in diverse domains, including emerging domains such as embodied AI and 3D medical AI, with about 250 related references. Finally, we highlight the current challenges to autoregressive models in vision with suggestions about potential research directions. We have also set up a Github repository to organize the papers included in this survey at: https://github.com/ChaofanTao/Autoregressive-Models-in-Vision-Survey.
M2R2: Mixture of Multi-Rate Residuals for Efficient Transformer Inference
Residual transformations enhance the representational depth and expressive power of large language models (LLMs). However, applying static residual transformations across all tokens in auto-regressive generation leads to a suboptimal trade-off between inference efficiency and generation fidelity. Existing methods, including Early Exiting, Skip Decoding, and Mixture-of-Depth address this by modulating the residual transformation based on token-level complexity. Nevertheless, these approaches predominantly consider the distance traversed by tokens through the model layers, neglecting the underlying velocity of residual evolution. We introduce Mixture of Multi-rate Residuals (M2R2), a framework that dynamically modulates residual velocity to improve early alignment, enhancing inference efficiency. Evaluations on reasoning oriented tasks such as Koala, Self-Instruct, WizardLM, and MT-Bench show M2R2 surpasses state-of-the-art distance-based strategies, balancing generation quality and speedup. In self-speculative decoding setup, M2R2 achieves up to 2.8x speedups on MT-Bench, outperforming methods like 2-model speculative decoding, Medusa, LookAhead Decoding, and DEED. In Mixture-of-Experts (MoE) architectures, integrating early residual alignment with ahead-of-time expert loading into high-bandwidth memory (HBM) accelerates decoding, reduces expert-switching bottlenecks, and achieves a 2.9x speedup, making it highly effective in resource-constrained environments.
Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP
When trained on large, unfiltered crawls from the internet, language models pick up and reproduce all kinds of undesirable biases that can be found in the data: they often generate racist, sexist, violent or otherwise toxic language. As large models require millions of training examples to achieve good performance, it is difficult to completely prevent them from being exposed to such content. In this paper, we first demonstrate a surprising finding: pretrained language models recognize, to a considerable degree, their undesirable biases and the toxicity of the content they produce. We refer to this capability as self-diagnosis. Based on this finding, we then propose a decoding algorithm that, given only a textual description of the undesired behavior, reduces the probability of a language model producing problematic text. We refer to this approach as self-debiasing. Self-debiasing does not rely on manually curated word lists, nor does it require any training data or changes to the model's parameters. While we by no means eliminate the issue of language models generating biased text, we believe our approach to be an important step in this direction.
Challenging Decoder helps in Masked Auto-Encoder Pre-training for Dense Passage Retrieval
Recently, various studies have been directed towards exploring dense passage retrieval techniques employing pre-trained language models, among which the masked auto-encoder (MAE) pre-training architecture has emerged as the most promising. The conventional MAE framework relies on leveraging the passage reconstruction of decoder to bolster the text representation ability of encoder, thereby enhancing the performance of resulting dense retrieval systems. Within the context of building the representation ability of the encoder through passage reconstruction of decoder, it is reasonable to postulate that a ``more demanding'' decoder will necessitate a corresponding increase in the encoder's ability. To this end, we propose a novel token importance aware masking strategy based on pointwise mutual information to intensify the challenge of the decoder. Importantly, our approach can be implemented in an unsupervised manner, without adding additional expenses to the pre-training phase. Our experiments verify that the proposed method is both effective and robust on large-scale supervised passage retrieval datasets and out-of-domain zero-shot retrieval benchmarks.
SED: Self-Evaluation Decoding Enhances Large Language Models for Better Generation
Existing Large Language Models (LLMs) generate text through unidirectional autoregressive decoding methods to respond to various user queries. These methods tend to consider token selection in a simple sequential manner, making it easy to fall into suboptimal options when encountering uncertain tokens, referred to as chaotic points in our work. Many chaotic points exist in texts generated by LLMs, and they often significantly affect the quality of subsequently generated tokens, which can interfere with LLMs' generation. This paper proposes Self-Evaluation Decoding, SED, a decoding method for enhancing model generation. Analogous to the human decision-making process, SED integrates speculation and evaluation steps into the decoding process, allowing LLMs to make more careful decisions and thus optimize token selection at chaotic points. Experimental results across various tasks using different LLMs demonstrate SED's effectiveness.
NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics
The dominant paradigm for neural text generation is left-to-right decoding from autoregressive language models. Constrained or controllable generation under complex lexical constraints, however, requires foresight to plan ahead feasible future paths. Drawing inspiration from the A* search algorithm, we propose NeuroLogic A*esque, a decoding algorithm that incorporates heuristic estimates of future cost. We develop efficient lookahead heuristics that are efficient for large-scale language models, making our method a drop-in replacement for common techniques such as beam search and top-k sampling. To enable constrained generation, we build on NeuroLogic decoding (Lu et al., 2021), combining its flexibility in incorporating logical constraints with A*esque estimates of future constraint satisfaction. Our approach outperforms competitive baselines on five generation tasks, and achieves new state-of-the-art performance on table-to-text generation, constrained machine translation, and keyword-constrained generation. The improvements are particularly notable on tasks that require complex constraint satisfaction or in few-shot or zero-shot settings. NeuroLogic A*esque illustrates the power of decoding for improving and enabling new capabilities of large-scale language models.
MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers
Autoregressive transformers are spectacular models for short sequences but scale poorly to long sequences such as high-resolution images, podcasts, code, or books. We proposed Megabyte, a multi-scale decoder architecture that enables end-to-end differentiable modeling of sequences of over one million bytes. Megabyte segments sequences into patches and uses a local submodel within patches and a global model between patches. This enables sub-quadratic self-attention, much larger feedforward layers for the same compute, and improved parallelism during decoding -- unlocking better performance at reduced cost for both training and generation. Extensive experiments show that Megabyte allows byte-level models to perform competitively with subword models on long context language modeling, achieve state-of-the-art density estimation on ImageNet, and model audio from raw files. Together, these results establish the viability of tokenization-free autoregressive sequence modeling at scale.
Breaking the Attention Bottleneck
Attention-based transformers have become the standard architecture in many deep learning fields, primarily due to their ability to model long-range dependencies and handle variable-length input sequences. However, the attention mechanism with its quadratic complexity is a significant bottleneck in the transformer architecture. This algorithm is only uni-directional in the decoder and converges to a static pattern in over-parametrized decoder-only models. I address this issue by developing a generative function as attention or activation replacement. It still has the auto-regressive character by comparing each token with the previous one. In my test setting with nanoGPT this yields a smaller loss while having a smaller model. The loss further drops by incorporating an average context vector. This concept of attention replacement is distributed under the GNU AGPL v3 license at https://gitlab.com/Bachstelze/causal_generation.
Byte-Level Recursive Convolutional Auto-Encoder for Text
This article proposes to auto-encode text at byte-level using convolutional networks with a recursive architecture. The motivation is to explore whether it is possible to have scalable and homogeneous text generation at byte-level in a non-sequential fashion through the simple task of auto-encoding. We show that non-sequential text generation from a fixed-length representation is not only possible, but also achieved much better auto-encoding results than recurrent networks. The proposed model is a multi-stage deep convolutional encoder-decoder framework using residual connections, containing up to 160 parameterized layers. Each encoder or decoder contains a shared group of modules that consists of either pooling or upsampling layers, making the network recursive in terms of abstraction levels in representation. Results for 6 large-scale paragraph datasets are reported, in 3 languages including Arabic, Chinese and English. Analyses are conducted to study several properties of the proposed model.
Controllable Text Generation with Neurally-Decomposed Oracle
We propose a general and efficient framework to control auto-regressive generation models with NeurAlly-Decomposed Oracle (NADO). Given a pre-trained base language model and a sequence-level boolean oracle function, we propose to decompose the oracle function into token-level guidance to steer the base model in text generation. Specifically, the token-level guidance is approximated by a neural model trained with examples sampled from the base model, demanding no additional auxiliary labeled data. Based on posterior regularization, we present the closed-form optimal solution to incorporate the token-level guidance into the base model for controllable generation. We further provide a theoretical analysis of how the approximation quality of NADO affects the controllable generation results. Experiments conducted on two applications: (1) text generation with lexical constraints and (2) machine translation with formality control demonstrate that our framework efficiently guides the base model towards the given oracle while maintaining high generation quality.
Step-unrolled Denoising Autoencoders for Text Generation
In this paper we propose a new generative model of text, Step-unrolled Denoising Autoencoder (SUNDAE), that does not rely on autoregressive models. Similarly to denoising diffusion techniques, SUNDAE is repeatedly applied on a sequence of tokens, starting from random inputs and improving them each time until convergence. We present a simple new improvement operator that converges in fewer iterations than diffusion methods, while qualitatively producing better samples on natural language datasets. SUNDAE achieves state-of-the-art results (among non-autoregressive methods) on the WMT'14 English-to-German translation task and good qualitative results on unconditional language modeling on the Colossal Cleaned Common Crawl dataset and a dataset of Python code from GitHub. The non-autoregressive nature of SUNDAE opens up possibilities beyond left-to-right prompted generation, by filling in arbitrary blank patterns in a template.
CLLMs: Consistency Large Language Models
Parallel decoding methods such as Jacobi decoding show promise for more efficient LLM inference as it breaks the sequential nature of the LLM decoding process and transforms it into parallelizable computation. However, in practice, it achieves little speedup compared to traditional autoregressive (AR) decoding, primarily because Jacobi decoding seldom accurately predicts more than one token in a single fixed-point iteration step. To address this, we develop a new approach aimed at realizing fast convergence from any state to the fixed point on a Jacobi trajectory. This is accomplished by refining the target LLM to consistently predict the fixed point given any state as input. Extensive experiments demonstrate the effectiveness of our method, showing 2.4times to 3.4times improvements in generation speed while preserving generation quality across both domain-specific and open-domain benchmarks.
Fuse It More Deeply! A Variational Transformer with Layer-Wise Latent Variable Inference for Text Generation
The past several years have witnessed Variational Auto-Encoder's superiority in various text generation tasks. However, due to the sequential nature of the text, auto-regressive decoders tend to ignore latent variables and then reduce to simple language models, known as the KL vanishing problem, which would further deteriorate when VAE is combined with Transformer-based structures. To ameliorate this problem, we propose DELLA, a novel variational Transformer framework. DELLA learns a series of layer-wise latent variables with each inferred from those of lower layers and tightly coupled with the hidden states by low-rank tensor product. In this way, DELLA forces these posterior latent variables to be fused deeply with the whole computation path and hence incorporate more information. We theoretically demonstrate that our method can be regarded as entangling latent variables to avoid posterior information decrease through layers, enabling DELLA to get higher non-zero KL values even without any annealing or thresholding tricks. Experiments on four unconditional and three conditional generation tasks show that DELLA could better alleviate KL vanishing and improve both quality and diversity compared to several strong baselines.
ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation
Pre-trained models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. Recent works such as T5 and GPT-3 have shown that scaling up pre-trained language models can improve their generalization abilities. Particularly, the GPT-3 model with 175 billion parameters shows its strong task-agnostic zero-shot/few-shot learning capabilities. Despite their success, these large-scale models are trained on plain texts without introducing knowledge such as linguistic knowledge and world knowledge. In addition, most large-scale models are trained in an auto-regressive way. As a result, this kind of traditional fine-tuning approach demonstrates relatively weak performance when solving downstream language understanding tasks. In order to solve the above problems, we propose a unified framework named ERNIE 3.0 for pre-training large-scale knowledge enhanced models. It fuses auto-regressive network and auto-encoding network, so that the trained model can be easily tailored for both natural language understanding and generation tasks with zero-shot learning, few-shot learning or fine-tuning. We trained the model with 10 billion parameters on a 4TB corpus consisting of plain texts and a large-scale knowledge graph. Empirical results show that the model outperforms the state-of-the-art models on 54 Chinese NLP tasks, and its English version achieves the first place on the SuperGLUE benchmark (July 3, 2021), surpassing the human performance by +0.8% (90.6% vs. 89.8%).
Learning Low-Rank Latent Spaces with Simple Deterministic Autoencoder: Theoretical and Empirical Insights
The autoencoder is an unsupervised learning paradigm that aims to create a compact latent representation of data by minimizing the reconstruction loss. However, it tends to overlook the fact that most data (images) are embedded in a lower-dimensional space, which is crucial for effective data representation. To address this limitation, we propose a novel approach called Low-Rank Autoencoder (LoRAE). In LoRAE, we incorporated a low-rank regularizer to adaptively reconstruct a low-dimensional latent space while preserving the basic objective of an autoencoder. This helps embed the data in a lower-dimensional space while preserving important information. It is a simple autoencoder extension that learns low-rank latent space. Theoretically, we establish a tighter error bound for our model. Empirically, our model's superiority shines through various tasks such as image generation and downstream classification. Both theoretical and practical outcomes highlight the importance of acquiring low-dimensional embeddings.
A Thorough Examination of Decoding Methods in the Era of LLMs
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers. Prior research on decoding methods, primarily focusing on task-specific models, may not extend to the current era of general-purpose large language models (LLMs). Moreover, the recent influx of decoding strategies has further complicated this landscape. This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of LLMs, evaluating their performance, robustness to hyperparameter changes, and decoding speeds across a wide range of tasks, models, and deployment environments. Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization. Intriguingly, sensitivity analysis exposes that certain methods achieve superior performance at the cost of extensive hyperparameter tuning, highlighting the trade-off between attaining optimal results and the practicality of implementation in varying contexts.
Farzi Data: Autoregressive Data Distillation
We study data distillation for auto-regressive machine learning tasks, where the input and output have a strict left-to-right causal structure. More specifically, we propose Farzi, which summarizes an event sequence dataset into a small number of synthetic sequences -- Farzi Data -- which are optimized to maintain (if not improve) model performance compared to training on the full dataset. Under the hood, Farzi conducts memory-efficient data distillation by (i) deriving efficient reverse-mode differentiation of the Adam optimizer by leveraging Hessian-Vector Products; and (ii) factorizing the high-dimensional discrete event-space into a latent-space which provably promotes implicit regularization. Empirically, for sequential recommendation and language modeling tasks, we are able to achieve 98-120% of downstream full-data performance when training state-of-the-art models on Farzi Data of size as little as 0.1% of the original dataset. Notably, being able to train better models with significantly less data sheds light on the design of future large auto-regressive models, and opens up new opportunities to further scale up model and data sizes.
JPEG-LM: LLMs as Image Generators with Canonical Codec Representations
Recent work in image and video generation has been adopting the autoregressive LLM architecture due to its generality and potentially easy integration into multi-modal systems. The crux of applying autoregressive training in language generation to visual generation is discretization -- representing continuous data like images and videos as discrete tokens. Common methods of discretizing images and videos include modeling raw pixel values, which are prohibitively lengthy, or vector quantization, which requires convoluted pre-hoc training. In this work, we propose to directly model images and videos as compressed files saved on computers via canonical codecs (e.g., JPEG, AVC/H.264). Using the default Llama architecture without any vision-specific modifications, we pretrain JPEG-LM from scratch to generate images (and AVC-LM to generate videos as a proof of concept), by directly outputting compressed file bytes in JPEG and AVC formats. Evaluation of image generation shows that this simple and straightforward approach is more effective than pixel-based modeling and sophisticated vector quantization baselines (on which our method yields a 31% reduction in FID). Our analysis shows that JPEG-LM has an especial advantage over vector quantization models in generating long-tail visual elements. Overall, we show that using canonical codec representations can help lower the barriers between language generation and visual generation, facilitating future research on multi-modal language/image/video LLMs.
QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache
Large Language Models (LLMs) are increasingly being deployed on edge devices for long-context settings, creating a growing need for fast and efficient long-context inference. In these scenarios, the Key-Value (KV) cache is the primary bottleneck in terms of both GPU memory and latency, as the full KV cache must be loaded for each decoding step. While speculative decoding is a widely accepted technique to accelerate autoregressive decoding, existing methods often struggle to achieve significant speedups due to inefficient KV cache optimization strategies and result in low acceptance rates. To address these challenges, we propose a novel self-speculative decoding framework, QuantSpec, where the draft model shares the architecture of the target model but employs a hierarchical 4-bit quantized KV cache and 4-bit quantized weights for acceleration. QuantSpec maintains high acceptance rates (>90%) and reliably provides consistent end-to-end speedups upto sim2.5times, outperforming other self-speculative decoding methods that use sparse KV cache for long-context LLM inference. QuantSpec also reduces the memory requirements by sim 1.3times compared to these alternatives.
Next Patch Prediction for Autoregressive Visual Generation
Autoregressive models, built based on the Next Token Prediction (NTP) paradigm, show great potential in developing a unified framework that integrates both language and vision tasks. In this work, we rethink the NTP for autoregressive image generation and propose a novel Next Patch Prediction (NPP) paradigm. Our key idea is to group and aggregate image tokens into patch tokens containing high information density. With patch tokens as a shorter input sequence, the autoregressive model is trained to predict the next patch, thereby significantly reducing the computational cost. We further propose a multi-scale coarse-to-fine patch grouping strategy that exploits the natural hierarchical property of image data. Experiments on a diverse range of models (100M-1.4B parameters) demonstrate that the next patch prediction paradigm could reduce the training cost to around 0.6 times while improving image generation quality by up to 1.0 FID score on the ImageNet benchmark. We highlight that our method retains the original autoregressive model architecture without introducing additional trainable parameters or specifically designing a custom image tokenizer, thus ensuring flexibility and seamless adaptation to various autoregressive models for visual generation.
ReALLM: A general framework for LLM compression and fine-tuning
We introduce ReALLM, a novel approach for compression and memory-efficient adaptation of pre-trained language models that encompasses most of the post-training quantization and fine-tuning methods for a budget of <4 bits. Pre-trained matrices are decomposed into a high-precision low-rank component and a vector-quantized latent representation (using an autoencoder). During the fine-tuning step, only the low-rank components are updated. Our results show that pre-trained matrices exhibit different patterns. ReALLM adapts the shape of the encoder (small/large embedding, high/low bit VQ, etc.) to each matrix. ReALLM proposes to represent each matrix with a small embedding on b bits and a neural decoder model D_phi with its weights on b_phi bits. The decompression of a matrix requires only one embedding and a single forward pass with the decoder. Our weight-only quantization algorithm yields the best results on language generation tasks (C4 and WikiText-2) for a budget of 3 bits without any training. With a budget of 2 bits, ReALLM achieves state-of-the art performance after fine-tuning on a small calibration dataset.
Language Model Decoding as Likelihood-Utility Alignment
A critical component of a successful language generation pipeline is the decoding algorithm. However, the general principles that should guide the choice of decoding algorithm remain unclear. Previous works only compare decoding algorithms in narrow scenarios and their findings do not generalize across tasks. To better structure the discussion, we introduce a taxonomy that groups decoding strategies based on their implicit assumptions about how well the model's likelihood is aligned with the task-specific notion of utility. We argue that this taxonomy allows a broader view of the decoding problem and can lead to generalizable statements because it is grounded on the interplay between the decoding algorithms and the likelihood-utility misalignment. Specifically, by analyzing the correlation between the likelihood and the utility of predictions across a diverse set of tasks, we provide the first empirical evidence supporting the proposed taxonomy, and a set of principles to structure reasoning when choosing a decoding algorithm. Crucially, our analysis is the first one to relate likelihood-based decoding strategies with strategies that rely on external information such as value-guided methods and prompting, and covers the most diverse set of tasks up-to-date.
Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data
This paper studies a novel pre-training technique with unpaired speech data, Speech2C, for encoder-decoder based automatic speech recognition (ASR). Within a multi-task learning framework, we introduce two pre-training tasks for the encoder-decoder network using acoustic units, i.e., pseudo codes, derived from an offline clustering model. One is to predict the pseudo codes via masked language modeling in encoder output, like HuBERT model, while the other lets the decoder learn to reconstruct pseudo codes autoregressively instead of generating textual scripts. In this way, the decoder learns to reconstruct original speech information with codes before learning to generate correct text. Comprehensive experiments on the LibriSpeech corpus show that the proposed Speech2C can relatively reduce the word error rate (WER) by 19.2% over the method without decoder pre-training, and also outperforms significantly the state-of-the-art wav2vec 2.0 and HuBERT on fine-tuning subsets of 10h and 100h. We release our code and model at https://github.com/microsoft/SpeechT5/tree/main/Speech2C.
A Non-monotonic Self-terminating Language Model
Recent large-scale neural autoregressive sequence models have shown impressive performances on a variety of natural language generation tasks. However, their generated sequences often exhibit degenerate properties such as non-termination, undesirable repetition, and premature termination, when generated with decoding algorithms such as greedy search, beam search, top-k sampling, and nucleus sampling. In this paper, we focus on the problem of non-terminating sequences resulting from an incomplete decoding algorithm. We first define an incomplete probable decoding algorithm which includes greedy search, top-k sampling, and nucleus sampling, beyond the incomplete decoding algorithm originally put forward by Welleck et al. (2020). We then propose a non-monotonic self-terminating language model, which significantly relaxes the constraint of monotonically increasing termination probability in the originally proposed self-terminating language model by Welleck et al. (2020), to address the issue of non-terminating sequences when using incomplete probable decoding algorithms. We prove that our proposed model prevents non-terminating sequences when using not only incomplete probable decoding algorithms but also beam search. We empirically validate our model on sequence completion tasks with various architectures.
k-Sparse Autoencoders
Recently, it has been observed that when representations are learnt in a way that encourages sparsity, improved performance is obtained on classification tasks. These methods involve combinations of activation functions, sampling steps and different kinds of penalties. To investigate the effectiveness of sparsity by itself, we propose the k-sparse autoencoder, which is an autoencoder with linear activation function, where in hidden layers only the k highest activities are kept. When applied to the MNIST and NORB datasets, we find that this method achieves better classification results than denoising autoencoders, networks trained with dropout, and RBMs. k-sparse autoencoders are simple to train and the encoding stage is very fast, making them well-suited to large problem sizes, where conventional sparse coding algorithms cannot be applied.
BASS: Batched Attention-optimized Speculative Sampling
Speculative decoding has emerged as a powerful method to improve latency and throughput in hosting large language models. However, most existing implementations focus on generating a single sequence. Real-world generative AI applications often require multiple responses and how to perform speculative decoding in a batched setting while preserving its latency benefits poses non-trivial challenges. This paper describes a system of batched speculative decoding that sets a new state of the art in multi-sequence generation latency and that demonstrates superior GPU utilization as well as quality of generations within a time budget. For example, for a 7.8B-size model on a single A100 GPU and with a batch size of 8, each sequence is generated at an average speed of 5.8ms per token, the overall throughput being 1.1K tokens per second. These results represent state-of-the-art latency and a 2.15X speed-up over optimized regular decoding. Within a time budget that regular decoding does not finish, our system is able to generate sequences with HumanEval Pass@First of 43% and Pass@All of 61%, far exceeding what's feasible with single-sequence speculative decoding. Our peak GPU utilization during decoding reaches as high as 15.8%, more than 3X the highest of that of regular decoding and around 10X of single-sequence speculative decoding.
MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
Autoregressive Image Generation without Vector Quantization
Conventional wisdom holds that autoregressive models for image generation are typically accompanied by vector-quantized tokens. We observe that while a discrete-valued space can facilitate representing a categorical distribution, it is not a necessity for autoregressive modeling. In this work, we propose to model the per-token probability distribution using a diffusion procedure, which allows us to apply autoregressive models in a continuous-valued space. Rather than using categorical cross-entropy loss, we define a Diffusion Loss function to model the per-token probability. This approach eliminates the need for discrete-valued tokenizers. We evaluate its effectiveness across a wide range of cases, including standard autoregressive models and generalized masked autoregressive (MAR) variants. By removing vector quantization, our image generator achieves strong results while enjoying the speed advantage of sequence modeling. We hope this work will motivate the use of autoregressive generation in other continuous-valued domains and applications.
Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding
We present a novel inference scheme, self-speculative decoding, for accelerating Large Language Models (LLMs) without the need for an auxiliary model. This approach is characterized by a two-stage process: drafting and verification. The drafting stage generates draft tokens at a slightly lower quality but more quickly, which is achieved by selectively skipping certain intermediate layers during drafting Subsequently, the verification stage employs the original LLM to validate those draft output tokens in one forward pass. This process ensures the final output remains identical to that produced by the unaltered LLM, thereby maintaining output quality. The proposed method requires no additional neural network training and no extra memory footprint, making it a plug-and-play and cost-effective solution for inference acceleration. Benchmarks with LLaMA-2 and its fine-tuned models demonstrated a speedup up to 1.73times.
Personalized Text-to-Image Generation with Auto-Regressive Models
Personalized image synthesis has emerged as a pivotal application in text-to-image generation, enabling the creation of images featuring specific subjects in diverse contexts. While diffusion models have dominated this domain, auto-regressive models, with their unified architecture for text and image modeling, remain underexplored for personalized image generation. This paper investigates the potential of optimizing auto-regressive models for personalized image synthesis, leveraging their inherent multimodal capabilities to perform this task. We propose a two-stage training strategy that combines optimization of text embeddings and fine-tuning of transformer layers. Our experiments on the auto-regressive model demonstrate that this method achieves comparable subject fidelity and prompt following to the leading diffusion-based personalization methods. The results highlight the effectiveness of auto-regressive models in personalized image generation, offering a new direction for future research in this area.
Speculative Decoding: Exploiting Speculative Execution for Accelerating Seq2seq Generation
We propose Speculative Decoding (SpecDec), for the first time ever, to formally study exploiting the idea of speculative execution to accelerate autoregressive (AR) decoding. Speculative Decoding has two innovations: Spec-Drafter -- an independent model specially optimized for efficient and accurate drafting -- and Spec-Verification -- a reliable method for verifying the drafted tokens efficiently in the decoding paradigm. Experimental results on various seq2seq tasks including machine translation and abstractive summarization show our approach can achieve around 5times speedup for the popular Transformer architectures with comparable generation quality to beam search decoding, refreshing the impression that the draft-then-verify paradigm introduces only 1.4timessim2times speedup. In addition to the remarkable speedup, we also demonstrate 3 additional advantages of SpecDec, revealing its practical value for accelerating generative models in real-world applications. Our models and codes are available at https://github.com/hemingkx/SpecDec.
MLLM can see? Dynamic Correction Decoding for Hallucination Mitigation
Multimodal Large Language Models (MLLMs) frequently exhibit hallucination phenomena, but the underlying reasons remain poorly understood. In this paper, we present an empirical analysis and find that, although MLLMs incorrectly generate the objects in the final output, they are actually able to recognize visual objects in the preceding layers. We speculate that this may be due to the strong knowledge priors of the language model suppressing the visual information, leading to hallucinations. Motivated by this, we propose a novel dynamic correction decoding method for MLLMs (DeCo), which adaptively selects the appropriate preceding layers and proportionally integrates knowledge into the final layer to adjust the output logits. Note that DeCo is model agnostic and can be seamlessly incorporated with various classic decoding strategies and applied to different MLLMs. We evaluate DeCo on widely-used benchmarks, demonstrating that it can reduce hallucination rates by a large margin compared to baselines, highlighting its potential to mitigate hallucinations. Code is available at https://github.com/zjunlp/DeCo.
Recursive Speculative Decoding: Accelerating LLM Inference via Sampling Without Replacement
Speculative decoding is an inference-acceleration method for large language models (LLMs) where a small language model generates a draft-token sequence which is further verified by the target LLM in parallel. Recent works have advanced this method by establishing a draft-token tree, achieving superior performance over a single-sequence speculative decoding. However, those works independently generate tokens at each level of the tree, not leveraging the tree's entire diversifiability. Besides, their empirical superiority has been shown for fixed length of sequences, implicitly granting more computational resource to LLM for the tree-based methods. None of the existing works has conducted empirical studies with fixed target computational budgets despite its importance to resource-bounded devices. We present Recursive Speculative Decoding (RSD), a novel tree-based method that samples draft tokens without replacement and maximizes the diversity of the tree. During RSD's drafting, the tree is built by either Gumbel-Top-k trick that draws tokens without replacement in parallel or Stochastic Beam Search that samples sequences without replacement while early-truncating unlikely draft sequences and reducing the computational cost of LLM. We empirically evaluate RSD with Llama 2 and OPT models, showing that RSD outperforms the baseline methods, consistently for fixed draft sequence length and in most cases for fixed computational budgets at LLM.
Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding
Large language models (LLMs) have become ubiquitous in practice and are widely used for generation tasks such as translation, summarization and instruction following. However, their enormous size and reliance on autoregressive decoding increase deployment costs and complicate their use in latency-critical applications. In this work, we propose a hybrid approach that combines language models of different sizes to increase the efficiency of autoregressive decoding while maintaining high performance. Our method utilizes a pretrained frozen LLM that encodes all prompt tokens once in parallel, and uses the resulting representations to condition and guide a small language model (SLM), which then generates the response more efficiently. We investigate the combination of encoder-decoder LLMs with both encoder-decoder and decoder-only SLMs from different model families and only require fine-tuning of the SLM. Experiments with various benchmarks show substantial speedups of up to 4times, with minor performance penalties of 1-2% for translation and summarization tasks compared to the LLM.
AUTOSPARSE: Towards Automated Sparse Training of Deep Neural Networks
Sparse training is emerging as a promising avenue for reducing the computational cost of training neural networks. Several recent studies have proposed pruning methods using learnable thresholds to efficiently explore the non-uniform distribution of sparsity inherent within the models. In this paper, we propose Gradient Annealing (GA), where gradients of masked weights are scaled down in a non-linear manner. GA provides an elegant trade-off between sparsity and accuracy without the need for additional sparsity-inducing regularization. We integrated GA with the latest learnable pruning methods to create an automated sparse training algorithm called AutoSparse, which achieves better accuracy and/or training/inference FLOPS reduction than existing learnable pruning methods for sparse ResNet50 and MobileNetV1 on ImageNet-1K: AutoSparse achieves (2x, 7x) reduction in (training,inference) FLOPS for ResNet50 on ImageNet at 80% sparsity. Finally, AutoSparse outperforms sparse-to-sparse SotA method MEST (uniform sparsity) for 80% sparse ResNet50 with similar accuracy, where MEST uses 12% more training FLOPS and 50% more inference FLOPS.
Clover: Regressive Lightweight Speculative Decoding with Sequential Knowledge
Large language models (LLMs) suffer from low efficiency as the mismatch between the requirement of auto-regressive decoding and the design of most contemporary GPUs. Specifically, billions to trillions of parameters must be loaded to the GPU cache through its limited memory bandwidth for computation, but only a small batch of tokens is actually computed. Consequently, the GPU spends most of its time on memory transfer instead of computation. Recently, parallel decoding, a type of speculative decoding algorithms, is becoming more popular and has demonstrated impressive efficiency improvement in generation. It introduces extra decoding heads to large models, enabling them to predict multiple subsequent tokens simultaneously and verify these candidate continuations in a single decoding step. However, this approach deviates from the training objective of next token prediction used during pre-training, resulting in a low hit rate for candidate tokens. In this paper, we propose a new speculative decoding algorithm, Clover, which integrates sequential knowledge into the parallel decoding process. This enhancement improves the hit rate of speculators and thus boosts the overall efficiency. Clover transmits the sequential knowledge from pre-speculated tokens via the Regressive Connection, then employs an Attention Decoder to integrate these speculated tokens. Additionally, Clover incorporates an Augmenting Block that modifies the hidden states to better align with the purpose of speculative generation rather than next token prediction. The experiment results demonstrate that Clover outperforms the baseline by up to 91% on Baichuan-Small and 146% on Baichuan-Large, respectively, and exceeds the performance of the previously top-performing method, Medusa, by up to 37% on Baichuan-Small and 57% on Baichuan-Large, respectively.
TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction
Autoregressive next-token prediction is a standard pretraining method for large-scale language models, but its application to vision tasks is hindered by the non-sequential nature of image data, leading to cumulative errors. Most vision models employ masked autoencoder (MAE) based pretraining, which faces scalability issues. To address these challenges, we introduce TokenUnify, a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction. We provide theoretical evidence demonstrating that TokenUnify mitigates cumulative errors in visual autoregression. Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution, ideal for creating spatially correlated long sequences. This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date and providing a unified benchmark for experimental validation. Leveraging the Mamba network inherently suited for long-sequence modeling on this dataset, TokenUnify not only reduces the computational complexity but also leads to a significant 45\% improvement in segmentation performance on downstream EM neuron segmentation tasks compared to existing methods. Furthermore, TokenUnify demonstrates superior scalability over MAE and traditional autoregressive methods, effectively bridging the gap between pretraining strategies for language and vision models. Code is available at https://github.com/ydchen0806/TokenUnify.
The Hyperfitting Phenomenon: Sharpening and Stabilizing LLMs for Open-Ended Text Generation
This paper introduces the counter-intuitive generalization results of overfitting pre-trained large language models (LLMs) on very small datasets. In the setting of open-ended text generation, it is well-documented that LLMs tend to generate repetitive and dull sequences, a phenomenon that is especially apparent when generating using greedy decoding. This issue persists even with state-of-the-art LLMs containing billions of parameters, trained via next-token prediction on large datasets. We find that by further fine-tuning these models to achieve a near-zero training loss on a small set of samples -- a process we refer to as hyperfitting -- the long-sequence generative capabilities are greatly enhanced. Greedy decoding with these Hyperfitted models even outperform Top-P sampling over long-sequences, both in terms of diversity and human preferences. This phenomenon extends to LLMs of various sizes, different domains, and even autoregressive image generation. We further find this phenomena to be distinctly different from that of Grokking and double descent. Surprisingly, our experiments indicate that hyperfitted models rarely fall into repeating sequences they were trained on, and even explicitly blocking these sequences results in high-quality output. All hyperfitted models produce extremely low-entropy predictions, often allocating nearly all probability to a single token.
Context Autoencoder for Self-Supervised Representation Learning
We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised representation pretraining. We pretrain an encoder by making predictions in the encoded representation space. The pretraining tasks include two tasks: masked representation prediction - predict the representations for the masked patches, and masked patch reconstruction - reconstruct the masked patches. The network is an encoder-regressor-decoder architecture: the encoder takes the visible patches as input; the regressor predicts the representations of the masked patches, which are expected to be aligned with the representations computed from the encoder, using the representations of visible patches and the positions of visible and masked patches; the decoder reconstructs the masked patches from the predicted encoded representations. The CAE design encourages the separation of learning the encoder (representation) from completing the pertaining tasks: masked representation prediction and masked patch reconstruction tasks, and making predictions in the encoded representation space empirically shows the benefit to representation learning. We demonstrate the effectiveness of our CAE through superior transfer performance in downstream tasks: semantic segmentation, object detection and instance segmentation, and classification. The code will be available at https://github.com/Atten4Vis/CAE.
DiffS2UT: A Semantic Preserving Diffusion Model for Textless Direct Speech-to-Speech Translation
While Diffusion Generative Models have achieved great success on image generation tasks, how to efficiently and effectively incorporate them into speech generation especially translation tasks remains a non-trivial problem. Specifically, due to the low information density of speech data, the transformed discrete speech unit sequence is much longer than the corresponding text transcription, posing significant challenges to existing auto-regressive models. Furthermore, it is not optimal to brutally apply discrete diffusion on the speech unit sequence while disregarding the continuous space structure, which will degrade the generation performance significantly. In this paper, we propose a novel diffusion model by applying the diffusion forward process in the continuous speech representation space, while employing the diffusion backward process in the discrete speech unit space. In this way, we preserve the semantic structure of the continuous speech representation space in the diffusion process and integrate the continuous and discrete diffusion models. We conduct extensive experiments on the textless direct speech-to-speech translation task, where the proposed method achieves comparable results to the computationally intensive auto-regressive baselines (500 steps on average) with significantly fewer decoding steps (50 steps).
Mask-Enhanced Autoregressive Prediction: Pay Less Attention to Learn More
Large Language Models (LLMs) are discovered to suffer from accurately retrieving key information. To address this, we propose Mask-Enhanced Autoregressive Prediction (MEAP), a simple yet effective training paradigm that seamlessly integrates Masked Language Modeling (MLM) into Next-Token Prediction (NTP) to enhance the latter's in-context retrieval capabilities. Specifically, MEAP first randomly masks a small fraction of input tokens and then directly performs the standard next-token prediction autoregressive using a decoder-only Transformer. MEAP eliminates the need for bidirectional attention or encoder-decoder architectures for MLM, incurring no additional computational overhead during pre-training or inference. Intensive experiments demonstrate that MEAP substantially outperforms NTP on key information retrieval and long-context reasoning tasks, while performing on par or better on commonsense reasoning tasks. The benefits of MEAP also extend to supervised fine-tuning, where it shows remarkable advantages in lost-in-the-middle scenarios, outperforming NTP by 11.77 percentage points. Our analysis indicates that MEAP's effectiveness arises from its ability to promote more distinguishable attention scores by concentrating on a reduced set of non-masked tokens. This mechanism improves the model's focus on task-relevant signals while mitigating the influence of peripheral context. These findings position MEAP as a promising training paradigm for large language models.
Grammar-Aligned Decoding
Large Language Models (LLMs) struggle with reliably generating highly structured outputs, such as program code, mathematical formulas, or well-formed markup. Constrained decoding approaches mitigate this problem by greedily restricting what tokens an LLM can output at each step to guarantee that the output matches a given constraint. Specifically, in grammar-constrained decoding (GCD), the LLM's output must follow a given grammar. In this paper, we demonstrate that GCD techniques (and in general constrained decoding techniques) can distort the LLM's distribution, leading to outputs that are grammatical but appear with likelihoods that are not proportional to the ones given by the LLM, and so ultimately are low-quality. We call the problem of aligning sampling with a grammar constraint, grammar-aligned decoding (GAD), and propose adaptive sampling with approximate expected futures (ASAp), a decoding algorithm that guarantees the output to be grammatical while provably producing outputs that match the conditional probability of the LLM's distribution conditioned on the given grammar constraint. Our algorithm uses prior sample outputs to soundly overapproximate the future grammaticality of different output prefixes. Our evaluation on code generation and structured NLP tasks shows how ASAp often produces outputs with higher likelihood (according to the LLM's distribution) than existing GCD techniques, while still enforcing the desired grammatical constraints.
From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems.
Characterizing and Efficiently Accelerating Multimodal Generation Model Inference
Generative artificial intelligence (AI) technology is revolutionizing the computing industry. Not only its applications have broadened to various sectors but also poses new system design and optimization opportunities. The technology is capable of understanding and responding in multiple modalities. However, the advanced capability currently comes with significant system resource demands. To sustainably scale generative AI capabilities to billions of users in the world, inference must be fast and efficient. This paper pinpoints key system design and optimization opportunities by characterizing a family of emerging multi-modal generation models on real systems. Auto-regressive token generation is a critical latency performance bottleneck, typically dominated by GPU idle time. In addition to memory-intensive attention across the generative AI models, linear operations constitute significant inference latency due to the feed forward networks in Transformer-based models. We demonstrate that state-of-the-art optimization levers, spanning from applications to system software and hardware, set a 3.88x better baseline.
Non-Autoregressive Predictive Coding for Learning Speech Representations from Local Dependencies
Self-supervised speech representations have been shown to be effective in a variety of speech applications. However, existing representation learning methods generally rely on the autoregressive model and/or observed global dependencies while generating the representation. In this work, we propose Non-Autoregressive Predictive Coding (NPC), a self-supervised method, to learn a speech representation in a non-autoregressive manner by relying only on local dependencies of speech. NPC has a conceptually simple objective and can be implemented easily with the introduced Masked Convolution Blocks. NPC offers a significant speedup for inference since it is parallelizable in time and has a fixed inference time for each time step regardless of the input sequence length. We discuss and verify the effectiveness of NPC by theoretically and empirically comparing it with other methods. We show that the NPC representation is comparable to other methods in speech experiments on phonetic and speaker classification while being more efficient.
GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters for Autoregressive Image Generation
In autoregressive (AR) image generation, visual tokenizers compress images into compact discrete latent tokens, enabling efficient training of downstream autoregressive models for visual generation via next-token prediction. While scaling visual tokenizers improves image reconstruction quality, it often degrades downstream generation quality -- a challenge not adequately addressed in existing literature. To address this, we introduce GigaTok, the first approach to simultaneously improve image reconstruction, generation, and representation learning when scaling visual tokenizers. We identify the growing complexity of latent space as the key factor behind the reconstruction vs. generation dilemma. To mitigate this, we propose semantic regularization, which aligns tokenizer features with semantically consistent features from a pre-trained visual encoder. This constraint prevents excessive latent space complexity during scaling, yielding consistent improvements in both reconstruction and downstream autoregressive generation. Building on semantic regularization, we explore three key practices for scaling tokenizers:(1) using 1D tokenizers for better scalability, (2) prioritizing decoder scaling when expanding both encoder and decoder, and (3) employing entropy loss to stabilize training for billion-scale tokenizers. By scaling to 3 space billion parameters, GigaTok achieves state-of-the-art performance in reconstruction, downstream AR generation, and downstream AR representation quality.
Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling
The rapid growth in the parameters of large language models (LLMs) has made inference latency a fundamental bottleneck, limiting broader application of LLMs. Speculative decoding represents a lossless approach to accelerate inference through a guess-and-verify paradigm, leveraging the parallel capabilities of modern hardware. Some speculative decoding methods rely on additional structures to guess draft tokens, such as small models or parameter-efficient architectures, which need extra training before use. Alternatively, retrieval-based train-free techniques build libraries from pre-existing corpora or by n-gram generation. However, they face challenges like large storage requirements, time-consuming retrieval, and limited adaptability. Observing that candidate tokens generated during the decoding process are likely to reoccur in future sequences, we propose Token Recycling. This approach stores candidate tokens in an adjacency matrix and employs a breadth-first search (BFS)-like algorithm on the matrix to construct a draft tree. The tree is then validated through tree attention. New candidate tokens from the decoding process are then used to update the matrix. Token Recycling requires \textless2MB of additional storage and achieves approximately 2x speedup across all sizes of LLMs. It significantly outperforms existing train-free methods by 30\% and even a training method by 25\%. It can be directly applied to any existing LLMs and tasks without the need for adaptation.
Autoregressive Diffusion Models
We introduce Autoregressive Diffusion Models (ARDMs), a model class encompassing and generalizing order-agnostic autoregressive models (Uria et al., 2014) and absorbing discrete diffusion (Austin et al., 2021), which we show are special cases of ARDMs under mild assumptions. ARDMs are simple to implement and easy to train. Unlike standard ARMs, they do not require causal masking of model representations, and can be trained using an efficient objective similar to modern probabilistic diffusion models that scales favourably to highly-dimensional data. At test time, ARDMs support parallel generation which can be adapted to fit any given generation budget. We find that ARDMs require significantly fewer steps than discrete diffusion models to attain the same performance. Finally, we apply ARDMs to lossless compression, and show that they are uniquely suited to this task. Contrary to existing approaches based on bits-back coding, ARDMs obtain compelling results not only on complete datasets, but also on compressing single data points. Moreover, this can be done using a modest number of network calls for (de)compression due to the model's adaptable parallel generation.
A Study of Autoregressive Decoders for Multi-Tasking in Computer Vision
There has been a recent explosion of computer vision models which perform many tasks and are composed of an image encoder (usually a ViT) and an autoregressive decoder (usually a Transformer). However, most of this work simply presents one system and its results, leaving many questions regarding design decisions and trade-offs of such systems unanswered. In this work, we aim to provide such answers. We take a close look at autoregressive decoders for multi-task learning in multimodal computer vision, including classification, captioning, visual question answering, and optical character recognition. Through extensive systematic experiments, we study the effects of task and data mixture, training and regularization hyperparameters, conditioning type and specificity, modality combination, and more. Importantly, we compare these to well-tuned single-task baselines to highlight the cost incurred by multi-tasking. A key finding is that a small decoder learned on top of a frozen pretrained encoder works surprisingly well. We call this setup locked-image tuning with decoder (LiT-decoder). It can be seen as teaching a decoder to interact with a pretrained vision model via natural language.
CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept
Large Language Models (LLMs) offer extensive knowledge across various domains, but they may inadvertently memorize sensitive, unauthorized, or malicious data, such as personal information in the medical and financial sectors. Machine unlearning methods aim to remove specific information from models after training to address this. However, current approaches require additional model training or struggle to effectively erase particular data points and their associated context due to LLMs' complex, dense, and continuous nature. In this study, we propose a novel amortized unlearning approach using codebook features and Sparse Autoencoders (SAEs). By leveraging a bottleneck to decompose the activation space and regulate information flow, our method efficiently unlearns targeted information while preserving the model's performance on unrelated data. To the best of our knowledge, this is the first work that successfully enables unlearning specific topics with contextual relevance in an LLM, marking a significant step towards real-world applications of machine unlearning.
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability -- they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.
Better Instruction-Following Through Minimum Bayes Risk
General-purpose LLM judges capable of human-level evaluation provide not only a scalable and accurate way of evaluating instruction-following LLMs but also new avenues for supervising and improving their performance. One promising way of leveraging LLM judges for supervision is through Minimum Bayes Risk (MBR) decoding, which uses a reference-based evaluator to select a high-quality output from amongst a set of candidate outputs. In the first part of this work, we explore using MBR decoding as a method for improving the test-time performance of instruction-following LLMs. We find that MBR decoding with reference-based LLM judges substantially improves over greedy decoding, best-of-N decoding with reference-free judges and MBR decoding with lexical and embedding-based metrics on AlpacaEval and MT-Bench. These gains are consistent across LLMs with up to 70B parameters, demonstrating that smaller LLM judges can be used to supervise much larger LLMs. Then, seeking to retain the improvements from MBR decoding while mitigating additional test-time costs, we explore iterative self-training on MBR-decoded outputs. We find that self-training using Direct Preference Optimisation leads to significant performance gains, such that the self-trained models with greedy decoding generally match and sometimes exceed the performance of their base models with MBR decoding.
Monitoring Decoding: Mitigating Hallucination via Evaluating the Factuality of Partial Response during Generation
While large language models have demonstrated exceptional performance across a wide range of tasks, they remain susceptible to hallucinations -- generating plausible yet factually incorrect contents. Existing methods to mitigating such risk often rely on sampling multiple full-length generations, which introduces significant response latency and becomes ineffective when the model consistently produces hallucinated outputs with high confidence. To address these limitations, we introduce Monitoring Decoding (MD), a novel framework that dynamically monitors the generation process and selectively applies in-process interventions, focusing on revising crucial tokens responsible for hallucinations. Instead of waiting until completion of multiple full-length generations, we identify hallucination-prone tokens during generation using a monitor function, and further refine these tokens through a tree-based decoding strategy. This approach ensures an enhanced factual accuracy and coherence in the generated output while maintaining efficiency. Experimental results demonstrate that MD consistently outperforms self-consistency-based approaches in both effectiveness and efficiency, achieving higher factual accuracy while significantly reducing computational overhead.
On Learning Discriminative Features from Synthesized Data for Self-Supervised Fine-Grained Visual Recognition
Self-Supervised Learning (SSL) has become a prominent approach for acquiring visual representations across various tasks, yet its application in fine-grained visual recognition (FGVR) is challenged by the intricate task of distinguishing subtle differences between categories. To overcome this, we introduce an novel strategy that boosts SSL's ability to extract critical discriminative features vital for FGVR. This approach creates synthesized data pairs to guide the model to focus on discriminative features critical for FGVR during SSL. We start by identifying non-discriminative features using two main criteria: features with low variance that fail to effectively separate data and those deemed less important by Grad-CAM induced from the SSL loss. We then introduce perturbations to these non-discriminative features while preserving discriminative ones. A decoder is employed to reconstruct images from both perturbed and original feature vectors to create data pairs. An encoder is trained on such generated data pairs to become invariant to variations in non-discriminative dimensions while focusing on discriminative features, thereby improving the model's performance in FGVR tasks. We demonstrate the promising FGVR performance of the proposed approach through extensive evaluation on a wide variety of datasets.
AdaEAGLE: Optimizing Speculative Decoding via Explicit Modeling of Adaptive Draft Structures
Speculative Decoding (SD) is a popular lossless technique for accelerating the inference of Large Language Models (LLMs). We show that the decoding speed of SD frameworks with static draft structures can be significantly improved by incorporating context-aware adaptive draft structures. However, current studies on adaptive draft structures are limited by their performance, modeling approaches, and applicability. In this paper, we introduce AdaEAGLE, the first SD framework that explicitly models adaptive draft structures. AdaEAGLE leverages the Lightweight Draft Length Predictor (LDLP) module to explicitly predict the optimal number of draft tokens during inference to guide the draft model. It achieves comparable speedup results without manual thresholds and allows for deeper, more specialized optimizations. Moreover, together with threshold-based strategies, AdaEAGLE achieves a 1.62times speedup over the vanilla AR decoding and outperforms fixed-length SotA baseline while maintaining output quality.
Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective
Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.
Latent Autoregressive Source Separation
Autoregressive models have achieved impressive results over a wide range of domains in terms of generation quality and downstream task performance. In the continuous domain, a key factor behind this success is the usage of quantized latent spaces (e.g., obtained via VQ-VAE autoencoders), which allow for dimensionality reduction and faster inference times. However, using existing pre-trained models to perform new non-trivial tasks is difficult since it requires additional fine-tuning or extensive training to elicit prompting. This paper introduces LASS as a way to perform vector-quantized Latent Autoregressive Source Separation (i.e., de-mixing an input signal into its constituent sources) without requiring additional gradient-based optimization or modifications of existing models. Our separation method relies on the Bayesian formulation in which the autoregressive models are the priors, and a discrete (non-parametric) likelihood function is constructed by performing frequency counts over latent sums of addend tokens. We test our method on images and audio with several sampling strategies (e.g., ancestral, beam search) showing competitive results with existing approaches in terms of separation quality while offering at the same time significant speedups in terms of inference time and scalability to higher dimensional data.
Ca2-VDM: Efficient Autoregressive Video Diffusion Model with Causal Generation and Cache Sharing
With the advance of diffusion models, today's video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available at https://github.com/Dawn-LX/CausalCache-VDM
PIXAR: Auto-Regressive Language Modeling in Pixel Space
Recent works showed the possibility of building open-vocabulary large language models (LLMs) that directly operate on pixel representations and are implemented as encoder-decoder models that reconstruct masked image patches of rendered text. However, these pixel-based LLMs are limited to autoencoding tasks and cannot generate new text as images. As such, they cannot be used for open-answer or generative language tasks. In this work, we overcome this limitation and introduce PIXAR, the first pixel-based autoregressive LLM that does not rely on a pre-defined vocabulary for both input and output text. Consisting of only a decoder, PIXAR can answer free-form generative tasks while keeping the text representation learning performance on par with previous encoder-decoder models. Furthermore, we highlight the challenges to autoregressively generate non-blurred text as images and link this to the usual maximum likelihood objective. We propose a simple adversarial pretraining that significantly improves the readability and performance of PIXAR making it comparable to GPT2 on short text generation tasks. This paves the way to building open-vocabulary LLMs that are usable for free-form generative tasks and questions the necessity of the usual symbolic input representation -- text as tokens -- for these challenging tasks.
Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation
Autoregressive visual generation models typically rely on tokenizers to compress images into tokens that can be predicted sequentially. A fundamental dilemma exists in token representation: discrete tokens enable straightforward modeling with standard cross-entropy loss, but suffer from information loss and tokenizer training instability; continuous tokens better preserve visual details, but require complex distribution modeling, complicating the generation pipeline. In this paper, we propose TokenBridge, which bridges this gap by maintaining the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens. To achieve this, we decouple discretization from the tokenizer training process through post-training quantization that directly obtains discrete tokens from continuous representations. Specifically, we introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism that efficiently model the resulting large token space. Extensive experiments show that our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction. This work demonstrates that bridging discrete and continuous paradigms can effectively harness the strengths of both approaches, providing a promising direction for high-quality visual generation with simple autoregressive modeling. Project page: https://yuqingwang1029.github.io/TokenBridge.
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference
The growth of the Machine-Learning-As-A-Service (MLaaS) market has highlighted clients' data privacy and security issues. Private inference (PI) techniques using cryptographic primitives offer a solution but often have high computation and communication costs, particularly with non-linear operators like ReLU. Many attempts to reduce ReLU operations exist, but they may need heuristic threshold selection or cause substantial accuracy loss. This work introduces AutoReP, a gradient-based approach to lessen non-linear operators and alleviate these issues. It automates the selection of ReLU and polynomial functions to speed up PI applications and introduces distribution-aware polynomial approximation (DaPa) to maintain model expressivity while accurately approximating ReLUs. Our experimental results demonstrate significant accuracy improvements of 6.12% (94.31%, 12.9K ReLU budget, CIFAR-10), 8.39% (74.92%, 12.9K ReLU budget, CIFAR-100), and 9.45% (63.69%, 55K ReLU budget, Tiny-ImageNet) over current state-of-the-art methods, e.g., SNL. Morever, AutoReP is applied to EfficientNet-B2 on ImageNet dataset, and achieved 75.55% accuracy with 176.1 times ReLU budget reduction.
Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster
In this work, we propose FastCoT, a model-agnostic framework based on parallel decoding without any further training of an auxiliary model or modification to the LLM itself. FastCoT uses a size-varying context window whose size changes with position to conduct parallel decoding and auto-regressive decoding simultaneously, thus fully utilizing GPU computation resources. In FastCoT, the parallel decoding part provides the LLM with a quick glance of the future composed of approximate tokens, which could lead to faster answers compared to regular autoregressive decoding used by causal transformers. We also provide an implementation of parallel decoding within LLM, which supports KV-cache generation and batch processing. Through extensive experiments, we demonstrate that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach. Additionally, we show that the context window size exhibits considerable robustness for different tasks.