- Models of Abelian varieties over valued fields, using model theory Given an elliptic curve E over a perfect defectless henselian valued field (F,val) with perfect residue field k_F and valuation ring O_F, there exists an integral separated smooth group scheme E over O_F with Etimes_{Spec O_F}Spec Fcong E. If char(k_F)neq 2,3 then one can be found over O_{F^{alg}} such that the definable group E(O) is the maximal generically stable subgroup of E. We also give some partial results on general Abelian varieties over F. The construction of E is by means of generating a birational group law over O_F by the aid of a generically stable generic type of a definable subgroup of E. 1 authors · Mar 28, 2023
- Curves, Jacobians, and Cryptography The main purpose of this paper is to give an overview over the theory of abelian varieties, with main focus on Jacobian varieties of curves reaching from well-known results till to latest developments and their usage in cryptography. In the first part we provide the necessary mathematical background on abelian varieties, their torsion points, Honda-Tate theory, Galois representations, with emphasis on Jacobian varieties and hyperelliptic Jacobians. In the second part we focus on applications of abelian varieties on cryptography and treating separately, elliptic curve cryptography, genus 2 and 3 cryptography, including Diffie-Hellman Key Exchange, index calculus in Picard groups, isogenies of Jacobians via correspondences and applications to discrete logarithms. Several open problems and new directions are suggested. 2 authors · Jul 13, 2018
- Stable rationality of hypersurfaces in schön affine varieties In recent years, there has been a development in approaching rationality problems through the motivic methods (cf. [Kontsevich--Tschinkel'19], [Nicaise--Shinder'19], [Nicaise--Ottem'21]). This method requires the explicit construction of degeneration families of curves with favorable properties. While the specific construction is generally difficult, [Nicaise--Ottem'22] combines combinatorial methods to construct degeneration families of hypersurfaces in toric varieties and shows the non-stable rationality of a very general hypersurface in projective spaces. In this paper, we extend the result of [Nicaise--Ottem'22] not only for hypersurfaces in algebraic tori but also to those in sch\"{o}n affine varieties. In application, we show the irrationality of certain hypersurfaces in the complex Grassmannian variety Gr(2, n) using the motivic method, which coincides with the result obtained by the same author in the previous research. 1 authors · Feb 12
- New counterexamples to the birational Torelli theorem for Calabi--Yau manifolds We produce counterexamples to the birational Torelli theorem for Calabi-Yau manifolds in arbitrarily high dimension: this is done by exhibiting a series of non birational pairs of Calabi-Yau (n^2-1)-folds which, for n geq 2 even, admit an isometry between their middle cohomologies. These varieties also satisfy an mathbb L-equivalence relation in the Grothendieck ring of varieties, i.e. the difference of their classes annihilates a power of the class of the affine line. We state this last property for a broader class of Calabi-Yau pairs, namely all those which are realized as pushforwards of a general (1,1)-section on a homogeneous roof in the sense of Kanemitsu, along its two extremal contractions. 1 authors · Nov 7, 2022
- The generalized roof F(1,2,n): Hodge structures and derived categories We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we consider the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to P^{n-1} and G(2, n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model. 4 authors · Oct 20, 2021
- Exact verification of the strong BSD conjecture for some absolutely simple abelian surfaces Let X be one of the 28 Atkin-Lehner quotients of a curve X_0(N) such that X has genus 2 and its Jacobian variety J is absolutely simple. We show that the Shafarevich-Tate group of J/Q is trivial. This verifies the strong BSD conjecture for J. 2 authors · Jul 1, 2021
- Fullness of the Kuznetsov-Polishchuk exceptional collection for the spinor tenfold Kuznetsov and Polishchuk provided a general algorithm to construct exceptional collections of maximal length for homogeneous varieties of type A,B,C,D. We consider the case of the spinor tenfold and we prove that the corresponding collection is full, i.e. it generates the whole derived category of coherent sheaves. As a step of the proof, we construct some resolutions of homogeneous vector bundles which might be of independent interest. 2 authors · Jun 19, 2023
- Higher Categories and Slices of Globular Operads In an unpublished preprint batanin, Batanin conjectures that it is possible to take `slices' of a globular operad, thereby isolating the algebraic structure in each dimension. It was further hypothesised that the slices of a globular operad for some theory of higher category contain essential information about those higher categories, namely whether or not they are equivalent to the fully weak variety. In this paper, we use the theory of presentations for globular operads developed in Me to provide a concrete definition of slices, and calculate the slices for several key theories of n-category. 1 authors · May 24, 2023
- Lie Group Decompositions for Equivariant Neural Networks Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals. 2 authors · Oct 17, 2023
- Calabi-Yau fibrations, simple K-equivalence and mutations A homogeneous roof is a rational homogeneous variety of Picard rank 2 and index r equipped with two different mathbb P^{r-1}-bundle structures. We consider bundles of homogeneous roofs over a smooth projective variety, formulating a relative version of the duality of Calabi--Yau pairs associated to roofs of projective bundles. We discuss how derived equivalence of such pairs can lift to Calabi--Yau fibrations, extending a result of Bridgeland and Maciocia to higher-dimensional cases. We formulate an approach to prove that the DK-conjecture holds for a class of simple K-equivalent maps arising from bundles of roofs. As an example, we propose a pair of eight-dimensional Calabi--Yau varieties fibered in dual Calabi--Yau threefolds, related by a GLSM phase transition, and we prove derived equivalence with the methods above. 1 authors · Jun 11, 2020
- Mukai duality via roofs of projective bundles We investigate a construction providing pairs of Calabi-Yau varieties described as zero loci of pushforwards of a hyperplane section on a roof as described by Kanemitsu. We discuss the implications of such construction at the level of Hodge equivalence, derived equivalence and mathbb L-equivalence. For the case of K3 surfaces, we provide alternative interpretations for the Fourier-Mukai duality in the family of K3 surfaces of degree 12 of Mukai. In all these constructions the derived equivalence lifts to an equivalence of matrix factorizations categories. 2 authors · Jan 17, 2020
- Principal Landau Determinants We reformulate the Landau analysis of Feynman integrals with the aim of advancing the state of the art in modern particle-physics computations. We contribute new algorithms for computing Landau singularities, using tools from polyhedral geometry and symbolic/numerical elimination. Inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ) on generalized Euler integrals, we define the principal Landau determinant of a Feynman diagram. We illustrate with a number of examples that this algebraic formalism allows to compute many components of the Landau singular locus. We adapt the GKZ framework by carefully specializing Euler integrals to Feynman integrals. For instance, ultraviolet and infrared singularities are detected as irreducible components of an incidence variety, which project dominantly to the kinematic space. We compute principal Landau determinants for the infinite families of one-loop and banana diagrams with different mass configurations, and for a range of cutting-edge Standard Model processes. Our algorithms build on the Julia package Landau.jl and are implemented in the new open-source package PLD.jl available at https://mathrepo.mis.mpg.de/PLD/. 3 authors · Nov 27, 2023
- Elliptic genera of two-dimensional N=2 gauge theories with rank-one gauge groups We compute the elliptic genera of two-dimensional N=(2,2) and N=(0,2) gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi-Yau, N=(2,2) SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2) model. 4 authors · May 2, 2013
- Torelli problem for Calabi-Yau threefolds with GLSM description We construct a gauged linear sigma model with two non-birational K\"alher phases which we prove to be derived equivalent, L-equivalent, deformation equivalent and Hodge equivalent. This provides a new counterexample to the birational Torelli problem which admits a simple GLSM interpretation. 2 authors · Nov 28, 2017
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
- Fixed point conditions for non-coprime actions In the setting of finite groups, suppose J acts on N via automorphisms so that the induced semidirect product Nrtimes J acts on some non-empty set Omega, with N acting transitively. Glauberman proved that if the orders of J and N are coprime, then J fixes a point in Omega. We consider the non-coprime case and show that if N is abelian and a Sylow p-subgroup of J fixes a point in Omega for each prime p, then J fixes a point in Omega. We also show that if N is nilpotent, Nrtimes J is supersoluble, and a Sylow p-subgroup of J fixes a point in Omega for each prime p, then J fixes a point in Omega. 1 authors · Aug 23, 2023
- Actions of nilpotent groups on nilpotent groups For finite nilpotent groups J and N, suppose J acts on N via automorphisms. We exhibit a decomposition of the first cohomology set in terms of the first cohomologies of the Sylow p-subgroups of J that mirrors the primary decomposition of H^1(J,N) for abelian N. We then show that if N rtimes J acts on some non-empty set Omega, where the action of N is transitive and for each prime p a Sylow p-subgroup of J fixes an element of Omega, then J fixes an element of Omega. 1 authors · Jan 25
- New infinite families in the stable homotopy groups of spheres We identify seven new 192-periodic infinite families of elements in the 2-primary stable homotopy groups of spheres. Although their Hurewicz image is trivial for topological modular forms, they remain nontrivial after T(2)- as well as K(2)-localization. We also obtain new information about 2-torsion and 2-divisibility of some of the previously known 192-periodic infinite families in the stable stems. 3 authors · Apr 15, 2024
2 All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra For any given dimension d, all reflexive d-polytopes can be found (in principle) as subpolytopes of a number of maximal polyhedra that are defined in terms of (d+1)-tuples of integers (weights), or combinations of k-tuples of weights with k<d+1. We present the results of a complete classification of sextuples of weights pertaining to the construction of all reflexive polytopes in five dimensions. We find 322 383 760 930 such weight systems. 185 269 499 015 of them give rise directly to reflexive polytopes and thereby to mirror pairs of Calabi-Yau fourfolds. These lead to 532 600 483 distinct sets of Hodge numbers. 2 authors · Aug 7, 2018