Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMAGMaR Shared Task System Description: Video Retrieval with OmniEmbed
Effective video retrieval remains challenging due to the complexity of integrating visual, auditory, and textual modalities. In this paper, we explore unified retrieval methods using OmniEmbed, a powerful multimodal embedding model from the Tevatron 2.0 toolkit, in the context of the MAGMaR shared task. Evaluated on the comprehensive MultiVENT 2.0 dataset, OmniEmbed generates unified embeddings for text, images, audio, and video, enabling robust multimodal retrieval. By finetuning OmniEmbed with the combined multimodal data--visual frames, audio tracks, and textual descriptions provided in MultiVENT 2.0, we achieve substantial improvements in complex, multilingual video retrieval tasks. Our submission achieved the highest score on the MAGMaR shared task leaderboard among public submissions as of May 20th, 2025, highlighting the practical effectiveness of our unified multimodal retrieval approach. Model checkpoint in this work is opensourced.
CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
Video-Guided Foley Sound Generation with Multimodal Controls
Generating sound effects for videos often requires creating artistic sound effects that diverge significantly from real-life sources and flexible control in the sound design. To address this problem, we introduce MultiFoley, a model designed for video-guided sound generation that supports multimodal conditioning through text, audio, and video. Given a silent video and a text prompt, MultiFoley allows users to create clean sounds (e.g., skateboard wheels spinning without wind noise) or more whimsical sounds (e.g., making a lion's roar sound like a cat's meow). MultiFoley also allows users to choose reference audio from sound effects (SFX) libraries or partial videos for conditioning. A key novelty of our model lies in its joint training on both internet video datasets with low-quality audio and professional SFX recordings, enabling high-quality, full-bandwidth (48kHz) audio generation. Through automated evaluations and human studies, we demonstrate that MultiFoley successfully generates synchronized high-quality sounds across varied conditional inputs and outperforms existing methods. Please see our project page for video results: https://ificl.github.io/MultiFoley/
Neural MMO 2.0: A Massively Multi-task Addition to Massively Multi-agent Learning
Neural MMO 2.0 is a massively multi-agent environment for reinforcement learning research. The key feature of this new version is a flexible task system that allows users to define a broad range of objectives and reward signals. We challenge researchers to train agents capable of generalizing to tasks, maps, and opponents never seen during training. Neural MMO features procedurally generated maps with 128 agents in the standard setting and support for up to. Version 2.0 is a complete rewrite of its predecessor with three-fold improved performance and compatibility with CleanRL. We release the platform as free and open-source software with comprehensive documentation available at neuralmmo.github.io and an active community Discord. To spark initial research on this new platform, we are concurrently running a competition at NeurIPS 2023.
Foam-Agent: Towards Automated Intelligent CFD Workflows
Computational Fluid Dynamics (CFD) is an essential simulation tool in various engineering disciplines, but it often requires substantial domain expertise and manual configuration, creating barriers to entry. We present Foam-Agent, a multi-agent framework that automates complex OpenFOAM-based CFD simulation workflows from natural language inputs. Our innovation includes (1) a hierarchical multi-index retrieval system with specialized indices for different simulation aspects, (2) a dependency-aware file generation system that provides consistency management across configuration files, and (3) an iterative error correction mechanism that diagnoses and resolves simulation failures without human intervention. Through comprehensive evaluation on the dataset of 110 simulation tasks, Foam-Agent achieves an 83.6% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM and 37.3% for OpenFOAM-GPT). Ablation studies demonstrate the critical contribution of each system component, with the specialized error correction mechanism providing a 36.4% performance improvement. Foam-Agent substantially lowers the CFD expertise threshold while maintaining modeling accuracy, demonstrating the potential of specialized multi-agent systems to democratize access to complex scientific simulation tools. The code is public at https://github.com/csml-rpi/Foam-Agent
MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with State Corrections and State Tracking Baselines
MultiWOZ 2.0 (Budzianowski et al., 2018) is a recently released multi-domain dialogue dataset spanning 7 distinct domains and containing over 10,000 dialogues. Though immensely useful and one of the largest resources of its kind to-date, MultiWOZ 2.0 has a few shortcomings. Firstly, there is substantial noise in the dialogue state annotations and dialogue utterances which negatively impact the performance of state-tracking models. Secondly, follow-up work (Lee et al., 2019) has augmented the original dataset with user dialogue acts. This leads to multiple co-existent versions of the same dataset with minor modifications. In this work we tackle the aforementioned issues by introducing MultiWOZ 2.1. To fix the noisy state annotations, we use crowdsourced workers to re-annotate state and utterances based on the original utterances in the dataset. This correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances by canonicalizing slot values in the utterances to the values in the dataset ontology. To address the second problem, we combined the contributions of the follow-up works into MultiWOZ 2.1. Hence, our dataset also includes user dialogue acts as well as multiple slot descriptions per dialogue state slot. We then benchmark a number of state-of-the-art dialogue state tracking models on the MultiWOZ 2.1 dataset and show the joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective models across various dialogue subproblems to be built in the future.
OmniFlow: Any-to-Any Generation with Multi-Modal Rectified Flows
We introduce OmniFlow, a novel generative model designed for any-to-any generation tasks such as text-to-image, text-to-audio, and audio-to-image synthesis. OmniFlow advances the rectified flow (RF) framework used in text-to-image models to handle the joint distribution of multiple modalities. It outperforms previous any-to-any models on a wide range of tasks, such as text-to-image and text-to-audio synthesis. Our work offers three key contributions: First, we extend RF to a multi-modal setting and introduce a novel guidance mechanism, enabling users to flexibly control the alignment between different modalities in the generated outputs. Second, we propose a novel architecture that extends the text-to-image MMDiT architecture of Stable Diffusion 3 and enables audio and text generation. The extended modules can be efficiently pretrained individually and merged with the vanilla text-to-image MMDiT for fine-tuning. Lastly, we conduct a comprehensive study on the design choices of rectified flow transformers for large-scale audio and text generation, providing valuable insights into optimizing performance across diverse modalities. The Code will be available at https://github.com/jacklishufan/OmniFlows.
MultiWOZ 2.2 : A Dialogue Dataset with Additional Annotation Corrections and State Tracking Baselines
MultiWOZ is a well-known task-oriented dialogue dataset containing over 10,000 annotated dialogues spanning 8 domains. It is extensively used as a benchmark for dialogue state tracking. However, recent works have reported presence of substantial noise in the dialogue state annotations. MultiWOZ 2.1 identified and fixed many of these erroneous annotations and user utterances, resulting in an improved version of this dataset. This work introduces MultiWOZ 2.2, which is a yet another improved version of this dataset. Firstly, we identify and fix dialogue state annotation errors across 17.3% of the utterances on top of MultiWOZ 2.1. Secondly, we redefine the ontology by disallowing vocabularies of slots with a large number of possible values (e.g., restaurant name, time of booking). In addition, we introduce slot span annotations for these slots to standardize them across recent models, which previously used custom string matching heuristics to generate them. We also benchmark a few state of the art dialogue state tracking models on the corrected dataset to facilitate comparison for future work. In the end, we discuss best practices for dialogue data collection that can help avoid annotation errors.
AudioGenie: A Training-Free Multi-Agent Framework for Diverse Multimodality-to-Multiaudio Generation
Multimodality-to-Multiaudio (MM2MA) generation faces significant challenges in synthesizing diverse and contextually aligned audio types (e.g., sound effects, speech, music, and songs) from multimodal inputs (e.g., video, text, images), owing to the scarcity of high-quality paired datasets and the lack of robust multi-task learning frameworks. Recently, multi-agent system shows great potential in tackling the above issues. However, directly applying it to MM2MA task presents three critical challenges: (1) inadequate fine-grained understanding of multimodal inputs (especially for video), (2) the inability of single models to handle diverse audio events, and (3) the absence of self-correction mechanisms for reliable outputs. To this end, we propose AudioGenie, a novel training-free multi-agent system featuring a dual-layer architecture with a generation team and a supervisor team. For the generation team, a fine-grained task decomposition and an adaptive Mixture-of-Experts (MoE) collaborative entity are designed for dynamic model selection, and a trial-and-error iterative refinement module is designed for self-correction. The supervisor team ensures temporal-spatial consistency and verifies outputs through feedback loops. Moreover, we build MA-Bench, the first benchmark for MM2MA tasks, comprising 198 annotated videos with multi-type audios. Experiments demonstrate that our AudioGenie outperforms state-of-the-art (SOTA) methods across 9 metrics in 8 tasks. User study further validate the effectiveness of the proposed method in terms of quality, accuracy, alignment, and aesthetic. The anonymous project website with samples can be found at https://audiogenie.github.io/.
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
Mass-Producing Failures of Multimodal Systems with Language Models
Deployed multimodal systems can fail in ways that evaluators did not anticipate. In order to find these failures before deployment, we introduce MultiMon, a system that automatically identifies systematic failures -- generalizable, natural-language descriptions of patterns of model failures. To uncover systematic failures, MultiMon scrapes a corpus for examples of erroneous agreement: inputs that produce the same output, but should not. It then prompts a language model (e.g., GPT-4) to find systematic patterns of failure and describe them in natural language. We use MultiMon to find 14 systematic failures (e.g., "ignores quantifiers") of the CLIP text-encoder, each comprising hundreds of distinct inputs (e.g., "a shelf with a few/many books"). Because CLIP is the backbone for most state-of-the-art multimodal systems, these inputs produce failures in Midjourney 5.1, DALL-E, VideoFusion, and others. MultiMon can also steer towards failures relevant to specific use cases, such as self-driving cars. We see MultiMon as a step towards evaluation that autonomously explores the long tail of potential system failures. Code for MULTIMON is available at https://github.com/tsb0601/MultiMon.