new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Aug 28

Towards Measuring the Representation of Subjective Global Opinions in Language Models

Large language models (LLMs) may not equitably represent diverse global perspectives on societal issues. In this paper, we develop a quantitative framework to evaluate whose opinions model-generated responses are more similar to. We first build a dataset, GlobalOpinionQA, comprised of questions and answers from cross-national surveys designed to capture diverse opinions on global issues across different countries. Next, we define a metric that quantifies the similarity between LLM-generated survey responses and human responses, conditioned on country. With our framework, we run three experiments on an LLM trained to be helpful, honest, and harmless with Constitutional AI. By default, LLM responses tend to be more similar to the opinions of certain populations, such as those from the USA, and some European and South American countries, highlighting the potential for biases. When we prompt the model to consider a particular country's perspective, responses shift to be more similar to the opinions of the prompted populations, but can reflect harmful cultural stereotypes. When we translate GlobalOpinionQA questions to a target language, the model's responses do not necessarily become the most similar to the opinions of speakers of those languages. We release our dataset for others to use and build on. Our data is at https://huggingface.co/datasets/Anthropic/llm_global_opinions. We also provide an interactive visualization at https://llmglobalvalues.anthropic.com.

CulturalBench: a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs

To make large language models (LLMs) more helpful across diverse cultures, it is essential to have effective cultural knowledge benchmarks to measure and track our progress. Effective benchmarks need to be robust, diverse, and challenging. We introduce CulturalBench: a set of 1,227 human-written and human-verified questions for effectively assessing LLMs' cultural knowledge, covering 45 global regions including the underrepresented ones like Bangladesh, Zimbabwe, and Peru. Questions - each verified by five independent annotators - span 17 diverse topics ranging from food preferences to greeting etiquettes. We evaluate models on two setups: CulturalBench-Easy and CulturalBench-Hard which share the same questions but asked differently. We find that LLMs are sensitive to such difference in setups (e.g., GPT-4o with 27.3% difference). Compared to human performance (92.6% accuracy), CulturalBench-Hard is more challenging for frontier LLMs with the best performing model (GPT-4o) at only 61.5% and the worst (Llama3-8b) at 21.4%. Moreover, we find that LLMs often struggle with tricky questions that have multiple correct answers (e.g., What utensils do the Chinese usually use?), revealing a tendency to converge to a single answer. Our results also indicate that OpenAI GPT-4o substantially outperform other proprietary and open source models in questions related to all but one region (Oceania). Nonetheless, all models consistently underperform on questions related to South America and the Middle East.

CaLMQA: Exploring culturally specific long-form question answering across 23 languages

Despite rising global usage of large language models (LLMs), their ability to generate long-form answers to culturally specific questions remains unexplored in many languages. To fill this gap, we perform the first study of textual multilingual long-form QA by creating CaLMQA, a dataset of 51.7K culturally specific questions across 23 different languages. We define culturally specific questions as those that refer to concepts unique to one or a few cultures, or have different answers depending on the cultural or regional context. We obtain these questions by crawling naturally-occurring questions from community web forums in high-resource languages, and by hiring native speakers to write questions in under-resourced, rarely-studied languages such as Fijian and Kirundi. Our data collection methodologies are translation-free, enabling the collection of culturally unique questions like "Kuber iki umwami wa mbere w'uburundi yitwa Ntare?" (Kirundi; English translation: "Why was the first king of Burundi called Ntare (Lion)?"). We evaluate factuality, relevance and surface-level quality of LLM-generated long-form answers, finding that (1) for many languages, even the best models make critical surface-level errors (e.g., answering in the wrong language, repetition), especially for low-resource languages; and (2) answers to culturally specific questions contain more factual errors than answers to culturally agnostic questions -- questions that have consistent meaning and answer across many cultures. We release CaLMQA to facilitate future research in cultural and multilingual long-form QA.

BLEnD: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages

Large language models (LLMs) often lack culture-specific knowledge of daily life, especially across diverse regions and non-English languages. Existing benchmarks for evaluating LLMs' cultural sensitivities are limited to a single language or collected from online sources such as Wikipedia, which do not reflect the mundane everyday lifestyles of diverse regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play, or the sports they practice in school is common cultural knowledge but uncommon in easily collected online sources, especially for underrepresented cultures. To address this issue, we introduce BLEnD, a hand-crafted benchmark designed to evaluate LLMs' everyday knowledge across diverse cultures and languages. BLEnD comprises 52.6k question-answer pairs from 16 countries/regions, in 13 different languages, including low-resource ones such as Amharic, Assamese, Azerbaijani, Hausa, and Sundanese. We construct the benchmark to include two formats of questions: short-answer and multiple-choice. We show that LLMs perform better for cultures that are highly represented online, with a maximum 57.34% difference in GPT-4, the best-performing model, in the short-answer format. For cultures represented by mid-to-high-resource languages, LLMs perform better in their local languages, but for cultures represented by low-resource languages, LLMs perform better in English than the local languages. We make our dataset publicly available at: https://github.com/nlee0212/BLEnD.

Beyond Aesthetics: Cultural Competence in Text-to-Image Models

Text-to-Image (T2I) models are being increasingly adopted in diverse global communities where they create visual representations of their unique cultures. Current T2I benchmarks primarily focus on faithfulness, aesthetics, and realism of generated images, overlooking the critical dimension of cultural competence. In this work, we introduce a framework to evaluate cultural competence of T2I models along two crucial dimensions: cultural awareness and cultural diversity, and present a scalable approach using a combination of structured knowledge bases and large language models to build a large dataset of cultural artifacts to enable this evaluation. In particular, we apply this approach to build CUBE (CUltural BEnchmark for Text-to-Image models), a first-of-its-kind benchmark to evaluate cultural competence of T2I models. CUBE covers cultural artifacts associated with 8 countries across different geo-cultural regions and along 3 concepts: cuisine, landmarks, and art. CUBE consists of 1) CUBE-1K, a set of high-quality prompts that enable the evaluation of cultural awareness, and 2) CUBE-CSpace, a larger dataset of cultural artifacts that serves as grounding to evaluate cultural diversity. We also introduce cultural diversity as a novel T2I evaluation component, leveraging quality-weighted Vendi score. Our evaluations reveal significant gaps in the cultural awareness of existing models across countries and provide valuable insights into the cultural diversity of T2I outputs for under-specified prompts. Our methodology is extendable to other cultural regions and concepts, and can facilitate the development of T2I models that better cater to the global population.

All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages

Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.

NormAd: A Benchmark for Measuring the Cultural Adaptability of Large Language Models

The integration of Large Language Models (LLMs) into various global cultures fundamentally presents a cultural challenge: LLMs must navigate interactions, respect social norms, and avoid transgressing cultural boundaries. However, it is still unclear if LLMs can adapt their outputs to diverse cultural norms. Our study focuses on this aspect. We introduce NormAd, a novel dataset, which includes 2.6k stories that represent social and cultural norms from 75 countries, to assess the ability of LLMs to adapt to different granular levels of socio-cultural contexts such as the country of origin, its associated cultural values, and prevalent social norms. Our study reveals that LLMs struggle with cultural reasoning across all contextual granularities, showing stronger adaptability to English-centric cultures over those from the Global South. Even with explicit social norms, the top-performing model, Mistral-7b-Instruct, achieves only 81.8\% accuracy, lagging behind the 95.6\% achieved by humans. Evaluation on NormAd further reveals that LLMs struggle to adapt to stories involving gift-giving across cultures. Due to inherent agreement or sycophancy biases, LLMs find it considerably easier to assess the social acceptability of stories that adhere to cultural norms than those that deviate from them. Our benchmark measures the cultural adaptability (or lack thereof) of LLMs, emphasizing the potential to make these technologies more equitable and useful for global audiences. We release the NormAd dataset and its associated code on GitHub.

GIMMICK -- Globally Inclusive Multimodal Multitask Cultural Knowledge Benchmarking

Large Vision-Language Models (LVLMs) have recently gained attention due to their distinctive performance and broad applicability. While it has been previously shown that their efficacy in usage scenarios involving non-Western contexts falls short, existing studies are limited in scope, covering just a narrow range of cultures, focusing exclusively on a small number of cultural aspects, or evaluating a limited selection of models on a single task only. Towards globally inclusive LVLM research, we introduce GIMMICK, an extensive multimodal benchmark designed to assess a broad spectrum of cultural knowledge across 144 countries representing six global macro-regions. GIMMICK comprises six tasks built upon three new datasets that span 728 unique cultural events or facets on which we evaluated 20 LVLMs and 11 LLMs, including five proprietary and 26 open-weight models of all sizes. We systematically examine (1) regional cultural biases, (2) the influence of model size, (3) input modalities, and (4) external cues. Our analyses reveal strong biases toward Western cultures across models and tasks and highlight strong correlations between model size and performance, as well as the effectiveness of multimodal input and external geographic cues. We further find that models have more knowledge of tangible than intangible aspects (e.g., food vs. rituals) and that they excel in recognizing broad cultural origins but struggle with a more nuanced understanding.

Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation

Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation.

CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark

Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.

Susu Box or Piggy Bank: Assessing Cultural Commonsense Knowledge between Ghana and the U.S

Recent work has highlighted the culturally-contingent nature of commonsense knowledge. We introduce AMAMMER{epsilon}, a test set of 525 multiple-choice questions designed to evaluate the commonsense knowledge of English LLMs, relative to the cultural contexts of Ghana and the United States. To create AMAMMER{epsilon}, we select a set of multiple-choice questions (MCQs) from existing commonsense datasets and rewrite them in a multi-stage process involving surveys of Ghanaian and U.S. participants. In three rounds of surveys, participants from both pools are solicited to (1) write correct and incorrect answer choices, (2) rate individual answer choices on a 5-point Likert scale, and (3) select the best answer choice from the newly-constructed MCQ items, in a final validation step. By engaging participants at multiple stages, our procedure ensures that participant perspectives are incorporated both in the creation and validation of test items, resulting in high levels of agreement within each pool. We evaluate several off-the-shelf English LLMs on AMAMMER{epsilon}. Uniformly, models prefer answers choices that align with the preferences of U.S. annotators over Ghanaian annotators. Additionally, when test items specify a cultural context (Ghana or the U.S.), models exhibit some ability to adapt, but performance is consistently better in U.S. contexts than Ghanaian. As large resources are devoted to the advancement of English LLMs, our findings underscore the need for culturally adaptable models and evaluations to meet the needs of diverse English-speaking populations around the world.

KAHANI: Culturally-Nuanced Visual Storytelling Pipeline for Non-Western Cultures

Large Language Models (LLMs) and Text-To-Image (T2I) models have demonstrated the ability to generate compelling text and visual stories. However, their outputs are predominantly aligned with the sensibilities of the Global North, often resulting in an outsider's gaze on other cultures. As a result, non-Western communities have to put extra effort into generating culturally specific stories. To address this challenge, we developed a visual storytelling pipeline called KAHANI that generates culturally grounded visual stories for non-Western cultures. Our pipeline leverages off-the-shelf models GPT-4 Turbo and Stable Diffusion XL (SDXL). By using Chain of Thought (CoT) and T2I prompting techniques, we capture the cultural context from user's prompt and generate vivid descriptions of the characters and scene compositions. To evaluate the effectiveness of KAHANI, we conducted a comparative user study with ChatGPT-4 (with DALL-E3) in which participants from different regions of India compared the cultural relevance of stories generated by the two tools. Results from the qualitative and quantitative analysis performed on the user study showed that KAHANI was able to capture and incorporate more Culturally Specific Items (CSIs) compared to ChatGPT-4. In terms of both its cultural competence and visual story generation quality, our pipeline outperformed ChatGPT-4 in 27 out of the 36 comparisons.

WorldView-Bench: A Benchmark for Evaluating Global Cultural Perspectives in Large Language Models

Large Language Models (LLMs) are predominantly trained and aligned in ways that reinforce Western-centric epistemologies and socio-cultural norms, leading to cultural homogenization and limiting their ability to reflect global civilizational plurality. Existing benchmarking frameworks fail to adequately capture this bias, as they rely on rigid, closed-form assessments that overlook the complexity of cultural inclusivity. To address this, we introduce WorldView-Bench, a benchmark designed to evaluate Global Cultural Inclusivity (GCI) in LLMs by analyzing their ability to accommodate diverse worldviews. Our approach is grounded in the Multiplex Worldview proposed by Senturk et al., which distinguishes between Uniplex models, reinforcing cultural homogenization, and Multiplex models, which integrate diverse perspectives. WorldView-Bench measures Cultural Polarization, the exclusion of alternative perspectives, through free-form generative evaluation rather than conventional categorical benchmarks. We implement applied multiplexity through two intervention strategies: (1) Contextually-Implemented Multiplex LLMs, where system prompts embed multiplexity principles, and (2) Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents representing distinct cultural perspectives collaboratively generate responses. Our results demonstrate a significant increase in Perspectives Distribution Score (PDS) entropy from 13% at baseline to 94% with MAS-Implemented Multiplex LLMs, alongside a shift toward positive sentiment (67.7%) and enhanced cultural balance. These findings highlight the potential of multiplex-aware AI evaluation in mitigating cultural bias in LLMs, paving the way for more inclusive and ethically aligned AI systems.

Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models

As LLMs are increasingly deployed in global applications, the importance of cultural sensitivity becomes paramount, ensuring that users from diverse backgrounds feel respected and understood. Cultural harm can arise when these models fail to align with specific cultural norms, resulting in misrepresentations or violations of cultural values. This work addresses the challenges of ensuring cultural sensitivity in LLMs, especially in small-parameter models that often lack the extensive training data needed to capture global cultural nuances. We present two key contributions: (1) A cultural harm test dataset, created to assess model outputs across different cultural contexts through scenarios that expose potential cultural insensitivities, and (2) A culturally aligned preference dataset, aimed at restoring cultural sensitivity through fine-tuning based on feedback from diverse annotators. These datasets facilitate the evaluation and enhancement of LLMs, ensuring their ethical and safe deployment across different cultural landscapes. Our results show that integrating culturally aligned feedback leads to a marked improvement in model behavior, significantly reducing the likelihood of generating culturally insensitive or harmful content. Ultimately, this work paves the way for more inclusive and respectful AI systems, fostering a future where LLMs can safely and ethically navigate the complexities of diverse cultural landscapes.

Evaluating Visual and Cultural Interpretation: The K-Viscuit Benchmark with Human-VLM Collaboration

To create culturally inclusive vision-language models (VLMs), the foremost requirement is developing a test benchmark that can diagnose the models' ability to respond to questions reflecting cultural elements. This paper addresses the necessity for such benchmarks, noting that existing research has relied on human annotators' manual efforts, which impedes diversity and efficiency. We propose a semi-automated pipeline for constructing cultural VLM benchmarks to enhance diversity and efficiency. This pipeline leverages human-VLM collaboration, where VLMs generate questions based on guidelines, human-annotated examples, and image-wise relevant knowledge, which are then reviewed by native speakers for quality and cultural relevance. The effectiveness of our adaptable pipeline is demonstrated through a specific application: creating a dataset tailored to Korean culture, dubbed K-Viscuit. The resulting benchmark features two types of questions: Type 1 questions measure visual recognition abilities, while Type 2 assess fine-grained visual reasoning skills. This ensures a thorough diagnosis of VLM models across various aspects. Our evaluation using K-Viscuit revealed that open-source models notably lag behind proprietary models in understanding Korean culture, highlighting areas for improvement. We provided diverse analyses of VLM performance across different cultural aspects. Besides, we explored the potential of incorporating external knowledge retrieval to enhance the generation process, suggesting future directions for improving cultural interpretation ability of VLMs. Our dataset and code will be made publicly available.

Inspecting the Geographical Representativeness of Images from Text-to-Image Models

Recent progress in generative models has resulted in models that produce both realistic as well as relevant images for most textual inputs. These models are being used to generate millions of images everyday, and hold the potential to drastically impact areas such as generative art, digital marketing and data augmentation. Given their outsized impact, it is important to ensure that the generated content reflects the artifacts and surroundings across the globe, rather than over-representing certain parts of the world. In this paper, we measure the geographical representativeness of common nouns (e.g., a house) generated through DALL.E 2 and Stable Diffusion models using a crowdsourced study comprising 540 participants across 27 countries. For deliberately underspecified inputs without country names, the generated images most reflect the surroundings of the United States followed by India, and the top generations rarely reflect surroundings from all other countries (average score less than 3 out of 5). Specifying the country names in the input increases the representativeness by 1.44 points on average for DALL.E 2 and 0.75 for Stable Diffusion, however, the overall scores for many countries still remain low, highlighting the need for future models to be more geographically inclusive. Lastly, we examine the feasibility of quantifying the geographical representativeness of generated images without conducting user studies.

VideoVista-CulturalLingo: 360^circ Horizons-Bridging Cultures, Languages, and Domains in Video Comprehension

Assessing the video comprehension capabilities of multimodal AI systems can effectively measure their understanding and reasoning abilities. Most video evaluation benchmarks are limited to a single language, typically English, and predominantly feature videos rooted in Western cultural contexts. In this paper, we present VideoVista-CulturalLingo, the first video evaluation benchmark designed to bridge cultural, linguistic, and domain divide in video comprehension. Our work differs from existing benchmarks in the following ways: 1) Cultural diversity, incorporating cultures from China, North America, and Europe; 2) Multi-linguistics, with questions presented in Chinese and English-two of the most widely spoken languages; and 3) Broad domain, featuring videos sourced from hundreds of human-created domains. VideoVista-CulturalLingo contains 1,389 videos and 3,134 QA pairs, and we have evaluated 24 recent open-source or proprietary video large models. From the experiment results, we observe that: 1) Existing models perform worse on Chinese-centric questions than Western-centric ones, particularly those related to Chinese history; 2) Current open-source models still exhibit limitations in temporal understanding, especially in the Event Localization task, achieving a maximum score of only 45.2%; 3) Mainstream models demonstrate strong performance in general scientific questions, while open-source models demonstrate weak performance in mathematics.

Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia

Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.

VLSP2022-EVJVQA Challenge: Multilingual Visual Question Answering

Visual Question Answering (VQA) is a challenging task of natural language processing (NLP) and computer vision (CV), attracting significant attention from researchers. English is a resource-rich language that has witnessed various developments in datasets and models for visual question answering. Visual question answering in other languages also would be developed for resources and models. In addition, there is no multilingual dataset targeting the visual content of a particular country with its own objects and cultural characteristics. To address the weakness, we provide the research community with a benchmark dataset named EVJVQA, including 33,000+ pairs of question-answer over three languages: Vietnamese, English, and Japanese, on approximately 5,000 images taken from Vietnam for evaluating multilingual VQA systems or models. EVJVQA is used as a benchmark dataset for the challenge of multilingual visual question answering at the 9th Workshop on Vietnamese Language and Speech Processing (VLSP 2022). This task attracted 62 participant teams from various universities and organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 0.4392 in F1-score and 0.4009 in BLUE on the private test set. The multilingual QA systems proposed by the top 2 teams use ViT for the pre-trained vision model and mT5 for the pre-trained language model, a powerful pre-trained language model based on the transformer architecture. EVJVQA is a challenging dataset that motivates NLP and CV researchers to further explore the multilingual models or systems for visual question answering systems. We released the challenge on the Codalab evaluation system for further research.

Complex QA and language models hybrid architectures, Survey

This paper reviews the state-of-the-art of language models architectures and strategies for "complex" question-answering (QA, CQA, CPS) with a focus on hybridization. Large Language Models (LLM) are good at leveraging public data on standard problems but once you want to tackle more specific complex questions or problems (e.g. How does the concept of personal freedom vary between different cultures ? What is the best mix of power generation methods to reduce climate change ?) you may need specific architecture, knowledge, skills, methods, sensitive data protection, explainability, human approval and versatile feedback... Recent projects like ChatGPT and GALACTICA have allowed non-specialists to grasp the great potential as well as the equally strong limitations of LLM in complex QA. In this paper, we start by reviewing required skills and evaluation techniques. We integrate findings from the robust community edited research papers BIG, BLOOM and HELM which open source, benchmark and analyze limits and challenges of LLM in terms of tasks complexity and strict evaluation on accuracy (e.g. fairness, robustness, toxicity, ...) as a baseline. We discuss some challenges associated with complex QA, including domain adaptation, decomposition and efficient multi-step QA, long form and non-factoid QA, safety and multi-sensitivity data protection, multimodal search, hallucinations, explainability and truthfulness, temporal reasoning. We analyze current solutions and promising research trends, using elements such as: hybrid LLM architectural patterns, training and prompting strategies, active human reinforcement learning supervised with AI, neuro-symbolic and structured knowledge grounding, program synthesis, iterated decomposition and others.

CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics

The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.

CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge

Frontier large language models (LLMs) are developed by researchers and practitioners with skewed cultural backgrounds and on datasets with skewed sources. However, LLMs' (lack of) multicultural knowledge cannot be effectively assessed with current methods for developing benchmarks. Existing multicultural evaluations primarily rely on expensive and restricted human annotations or potentially outdated internet resources. Thus, they struggle to capture the intricacy, dynamics, and diversity of cultural norms. LLM-generated benchmarks are promising, yet risk propagating the same biases they are meant to measure. To synergize the creativity and expert cultural knowledge of human annotators and the scalability and standardizability of LLM-based automation, we introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build truly challenging evaluation dataset for assessing the multicultural knowledge of LLMs, while improving annotators' capabilities and experiences. Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions, that modern LLMs fail at, in a gamified manner. Importantly, the increased level of AI assistance (e.g., LLM-generated revision hints) empowers users to create more difficult questions with enhanced perceived creativity of themselves, shedding light on the promises of involving heavier AI assistance in modern evaluation dataset creation procedures. Through a series of 1-hour workshop sessions, we gather CULTURALBENCH-V0.1, a compact yet high-quality evaluation dataset with users' red-teaming attempts, that different families of modern LLMs perform with accuracy ranging from 37.7% to 72.2%, revealing a notable gap in LLMs' multicultural proficiency.

Toward Socially Aware Vision-Language Models: Evaluating Cultural Competence Through Multimodal Story Generation

As Vision-Language Models (VLMs) achieve widespread deployment across diverse cultural contexts, ensuring their cultural competence becomes critical for responsible AI systems. While prior work has evaluated cultural awareness in text-only models and VLM object recognition tasks, no research has systematically assessed how VLMs adapt outputs when cultural identity cues are embedded in both textual prompts and visual inputs during generative tasks. We present the first comprehensive evaluation of VLM cultural competence through multimodal story generation, developing a novel multimodal framework that perturbs cultural identity and evaluates 5 contemporary VLMs on a downstream task: story generation. Our analysis reveals significant cultural adaptation capabilities, with rich culturally-specific vocabulary spanning names, familial terms, and geographic markers. However, we uncover concerning limitations: cultural competence varies dramatically across architectures, some models exhibit inverse cultural alignment, and automated metrics show architectural bias contradicting human assessments. Cross-modal evaluation shows that culturally distinct outputs are indeed detectable through visual-semantic similarity (28.7% within-nationality vs. 0.2% cross-nationality recall), yet visual-cultural understanding remains limited. In essence, we establish the promise and challenges of cultural competence in multimodal AI. We publicly release our codebase and data: https://github.com/ArkaMukherjee0/mmCultural

Measuring Hong Kong Massive Multi-Task Language Understanding

Multilingual understanding is crucial for the cross-cultural applicability of Large Language Models (LLMs). However, evaluation benchmarks designed for Hong Kong's unique linguistic landscape, which combines Traditional Chinese script with Cantonese as the spoken form and its cultural context, remain underdeveloped. To address this gap, we introduce HKMMLU, a multi-task language understanding benchmark that evaluates Hong Kong's linguistic competence and socio-cultural knowledge. The HKMMLU includes 26,698 multi-choice questions across 66 subjects, organized into four categories: Science, Technology, Engineering, and Mathematics (STEM), Social Sciences, Humanities, and Other. To evaluate the multilingual understanding ability of LLMs, 90,550 Mandarin-Cantonese translation tasks were additionally included. We conduct comprehensive experiments on GPT-4o, Claude 3.7 Sonnet, and 18 open-source LLMs of varying sizes on HKMMLU. The results show that the best-performing model, DeepSeek-V3, struggles to achieve an accuracy of 75\%, significantly lower than that of MMLU and CMMLU. This performance gap highlights the need to improve LLMs' capabilities in Hong Kong-specific language and knowledge domains. Furthermore, we investigate how question language, model size, prompting strategies, and question and reasoning token lengths affect model performance. We anticipate that HKMMLU will significantly advance the development of LLMs in multilingual and cross-cultural contexts, thereby enabling broader and more impactful applications.

Toward Inclusive Educational AI: Auditing Frontier LLMs through a Multiplexity Lens

As large language models (LLMs) like GPT-4 and Llama 3 become integral to educational contexts, concerns are mounting over the cultural biases, power imbalances, and ethical limitations embedded within these technologies. Though generative AI tools aim to enhance learning experiences, they often reflect values rooted in Western, Educated, Industrialized, Rich, and Democratic (WEIRD) cultural paradigms, potentially sidelining diverse global perspectives. This paper proposes a framework to assess and mitigate cultural bias within LLMs through the lens of applied multiplexity. Multiplexity, inspired by Senturk et al. and rooted in Islamic and other wisdom traditions, emphasizes the coexistence of diverse cultural viewpoints, supporting a multi-layered epistemology that integrates both empirical sciences and normative values. Our analysis reveals that LLMs frequently exhibit cultural polarization, with biases appearing in both overt responses and subtle contextual cues. To address inherent biases and incorporate multiplexity in LLMs, we propose two strategies: Contextually-Implemented Multiplex LLMs, which embed multiplex principles directly into the system prompt, influencing LLM outputs at a foundational level and independent of individual prompts, and Multi-Agent System (MAS)-Implemented Multiplex LLMs, where multiple LLM agents, each representing distinct cultural viewpoints, collaboratively generate a balanced, synthesized response. Our findings demonstrate that as mitigation strategies evolve from contextual prompting to MAS-implementation, cultural inclusivity markedly improves, evidenced by a significant rise in the Perspectives Distribution Score (PDS) and a PDS Entropy increase from 3.25\% at baseline to 98\% with the MAS-Implemented Multiplex LLMs. Sentiment analysis further shows a shift towards positive sentiment across cultures,...

CultureMERT: Continual Pre-Training for Cross-Cultural Music Representation Learning

Recent advances in music foundation models have improved audio representation learning, yet their effectiveness across diverse musical traditions remains limited. We introduce CultureMERT-95M, a multi-culturally adapted foundation model developed to enhance cross-cultural music representation learning and understanding. To achieve this, we propose a two-stage continual pre-training strategy that integrates learning rate re-warming and re-decaying, enabling stable adaptation even with limited computational resources. Training on a 650-hour multi-cultural data mix, comprising Greek, Turkish, and Indian music traditions, results in an average improvement of 4.9% in ROC-AUC and AP across diverse non-Western music auto-tagging tasks, surpassing prior state-of-the-art, with minimal forgetting on Western-centric benchmarks. We further investigate task arithmetic, an alternative approach to multi-cultural adaptation that merges single-culture adapted models in the weight space. Task arithmetic performs on par with our multi-culturally trained model on non-Western auto-tagging tasks and shows no regression on Western datasets. Cross-cultural evaluation reveals that single-culture models transfer with varying effectiveness across musical traditions, whereas the multi-culturally adapted model achieves the best overall performance. To support research on world music representation learning, we publicly release CultureMERT-95M and CultureMERT-TA-95M, fostering the development of more culturally aware music foundation models.

TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish

Multiple choice question answering tasks evaluate the reasoning, comprehension, and mathematical abilities of Large Language Models (LLMs). While existing benchmarks employ automatic translation for multilingual evaluation, this approach is error-prone and potentially introduces culturally biased questions, especially in social sciences. We introduce the first multitask, multiple-choice Turkish QA benchmark, TurkishMMLU, to evaluate LLMs' understanding of the Turkish language. TurkishMMLU includes over 10,000 questions, covering 9 different subjects from Turkish high-school education curricula. These questions are written by curriculum experts, suitable for the high-school curricula in Turkey, covering subjects ranging from natural sciences and math questions to more culturally representative topics such as Turkish Literature and the history of the Turkish Republic. We evaluate over 20 LLMs, including multilingual open-source (e.g., Gemma, Llama, MT5), closed-source (GPT 4o, Claude, Gemini), and Turkish-adapted (e.g., Trendyol) models. We provide an extensive evaluation, including zero-shot and few-shot evaluation of LLMs, chain-of-thought reasoning, and question difficulty analysis along with model performance. We provide an in-depth analysis of the Turkish capabilities and limitations of current LLMs to provide insights for future LLMs for the Turkish language. We publicly release our code for the dataset and evaluation: https://github.com/ArdaYueksel/TurkishMMLU.

Language Specific Knowledge: Do Models Know Better in X than in English?

Code-switching is a common phenomenon of alternating between different languages in the same utterance, thought, or conversation. We posit that humans code-switch because they feel more comfortable talking about certain topics and domains in one language than another. With the rise of knowledge-intensive language models, we ask ourselves the next, natural question: Could models hold more knowledge on some topics in some language X? More importantly, could we improve reasoning by changing the language that reasoning is performed in? We coin the term Language Specific Knowledge (LSK) to represent this phenomenon. As ethnic cultures tend to develop alongside different languages, we employ culture-specific datasets (that contain knowledge about cultural and social behavioral norms). We find that language models can perform better when using chain-of-thought reasoning in some languages other than English, sometimes even better in low-resource languages. Paired with previous works showing that semantic similarity does not equate to representational similarity, we hypothesize that culturally specific texts occur more abundantly in corresponding languages, enabling specific knowledge to occur only in specific "expert" languages. Motivated by our initial results, we design a simple methodology called LSKExtractor to benchmark the language-specific knowledge present in a language model and, then, exploit it during inference. We show our results on various models and datasets, showing an average relative improvement of 10% in accuracy. Our research contributes to the open-source development of language models that are inclusive and more aligned with the cultural and linguistic contexts in which they are deployed.

The Bitter Lesson Learned from 2,000+ Multilingual Benchmarks

As large language models (LLMs) continue to advance in linguistic capabilities, robust multilingual evaluation has become essential for promoting equitable technological progress. This position paper examines over 2,000 multilingual (non-English) benchmarks from 148 countries, published between 2021 and 2024, to evaluate past, present, and future practices in multilingual benchmarking. Our findings reveal that, despite significant investments amounting to tens of millions of dollars, English remains significantly overrepresented in these benchmarks. Additionally, most benchmarks rely on original language content rather than translations, with the majority sourced from high-resource countries such as China, India, Germany, the UK, and the USA. Furthermore, a comparison of benchmark performance with human judgments highlights notable disparities. STEM-related tasks exhibit strong correlations with human evaluations (0.70 to 0.85), while traditional NLP tasks like question answering (e.g., XQuAD) show much weaker correlations (0.11 to 0.30). Moreover, translating English benchmarks into other languages proves insufficient, as localized benchmarks demonstrate significantly higher alignment with local human judgments (0.68) than their translated counterparts (0.47). This underscores the importance of creating culturally and linguistically tailored benchmarks rather than relying solely on translations. Through this comprehensive analysis, we highlight six key limitations in current multilingual evaluation practices, propose the guiding principles accordingly for effective multilingual benchmarking, and outline five critical research directions to drive progress in the field. Finally, we call for a global collaborative effort to develop human-aligned benchmarks that prioritize real-world applications.

CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models

This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.

Lost in Cultural Translation: Do LLMs Struggle with Math Across Cultural Contexts?

Large Language Models (LLMs) have significantly advanced various fields, particularly coding, mathematical reasoning, and logical problem solving. However, a critical question remains: Do these mathematical reasoning abilities persist when LLMs are presented with culturally adapted math problems? Specifically, how do LLMs perform when faced with math problems embedded in cultural contexts that have no significant representation in main stream web-scale AI training data? To explore this, we generated six synthetic cultural datasets from GSM8K, a widely used benchmark for assessing LLMs' mathematical reasoning skills. While preserving the mathematical logic and numerical values of the original GSM8K test set, we modify cultural elements such as personal names, food items, place names, etc. These culturally adapted datasets provide a more reliable framework for evaluating LLMs' mathematical reasoning under shifting cultural contexts. Our findings reveal that LLMs struggle with math problems when cultural references change, even though the underlying mathematical structure remains constant. Smaller models exhibit greater performance drops compared to larger models. Interestingly, our results also suggest that cultural familiarity can enhance mathematical reasoning. Even models with no explicit mathematical training but exposure to relevant cultural contexts sometimes outperform larger, mathematically proficient models on culturally embedded math problems. This study highlights the impact of cultural context on the mathematical reasoning abilities of LLMs, underscoring the need for more diverse and representative training data to improve robustness in real-world applications. The benchmark data sets and script for reproducing the results are available at https://github.com/akarim23131/Lost_in_Cultural_Translation

RoleEval: A Bilingual Role Evaluation Benchmark for Large Language Models

The rapid evolution of large language models (LLMs) necessitates effective benchmarks for evaluating their role knowledge, which is essential for establishing connections with the real world and providing more immersive interactions. This paper introduces RoleEval, a bilingual benchmark designed to assess the memorization, utilization, and reasoning capabilities of role knowledge. RoleEval comprises RoleEval-Global (including internationally recognized characters) and RoleEval-Chinese (including characters popular in China), with 6,000 Chinese-English parallel multiple-choice questions focusing on 300 influential people and fictional characters drawn from a variety of domains including celebrities, anime, comics, movies, TV series, games, and fiction. These questions cover basic knowledge and multi-hop reasoning abilities, aiming to systematically probe various aspects such as personal information, relationships, abilities, and experiences of the characters. To maintain high standards, we perform a hybrid quality check process combining automatic and human verification, ensuring that the questions are diverse, challenging, and discriminative. Our extensive evaluations of RoleEval across various open-source and proprietary large language models, under both the zero- and few-shot settings, reveal insightful findings. Notably, while GPT-4 outperforms other models on RoleEval-Global, Chinese LLMs excel on RoleEval-Chinese, highlighting significant knowledge distribution differences. We expect that RoleEval will highlight the significance of assessing role knowledge for foundation models across various languages and cultural settings.

From Local to Global: A Graph RAG Approach to Query-Focused Summarization

The use of retrieval-augmented generation (RAG) to retrieve relevant information from an external knowledge source enables large language models (LLMs) to answer questions over private and/or previously unseen document collections. However, RAG fails on global questions directed at an entire text corpus, such as "What are the main themes in the dataset?", since this is inherently a query-focused summarization (QFS) task, rather than an explicit retrieval task. Prior QFS methods, meanwhile, fail to scale to the quantities of text indexed by typical RAG systems. To combine the strengths of these contrasting methods, we propose a Graph RAG approach to question answering over private text corpora that scales with both the generality of user questions and the quantity of source text to be indexed. Our approach uses an LLM to build a graph-based text index in two stages: first to derive an entity knowledge graph from the source documents, then to pregenerate community summaries for all groups of closely-related entities. Given a question, each community summary is used to generate a partial response, before all partial responses are again summarized in a final response to the user. For a class of global sensemaking questions over datasets in the 1 million token range, we show that Graph RAG leads to substantial improvements over a na\"ive RAG baseline for both the comprehensiveness and diversity of generated answers. An open-source, Python-based implementation of both global and local Graph RAG approaches is forthcoming at https://aka.ms/graphrag.

Diminished Diversity-of-Thought in a Standard Large Language Model

We test whether Large Language Models (LLMs) can be used to simulate human participants in social-science studies. To do this, we run replications of 14 studies from the Many Labs 2 replication project with OpenAI's text-davinci-003 model, colloquially known as GPT3.5. Based on our pre-registered analyses, we find that among the eight studies we could analyse, our GPT sample replicated 37.5% of the original results and 37.5% of the Many Labs 2 results. However, we were unable to analyse the remaining six studies due to an unexpected phenomenon we call the "correct answer" effect. Different runs of GPT3.5 answered nuanced questions probing political orientation, economic preference, judgement, and moral philosophy with zero or near-zero variation in responses: with the supposedly "correct answer." In one exploratory follow-up study, we found that a "correct answer" was robust to changing the demographic details that precede the prompt. In another, we found that most but not all "correct answers" were robust to changing the order of answer choices. One of our most striking findings occurred in our replication of the Moral Foundations Theory survey results, where we found GPT3.5 identifying as a political conservative in 99.6% of the cases, and as a liberal in 99.3% of the cases in the reverse-order condition. However, both self-reported 'GPT conservatives' and 'GPT liberals' showed right-leaning moral foundations. Our results cast doubts on the validity of using LLMs as a general replacement for human participants in the social sciences. Our results also raise concerns that a hypothetical AI-led future may be subject to a diminished diversity-of-thought.

Crossing the Linguistic Causeway: Ethnonational Differences on Soundscape Attributes in Bahasa Melayu

Despite being neighbouring countries and sharing the language of Bahasa Melayu (ISO 639-3:ZSM), cultural and language education policy differences between Singapore and Malaysia led to differences in the translation of the "annoying" perceived affective quality (PAQ) attribute from English (ISO 639-3:ENG) to ZSM. This study expands upon the translation of the PAQ attributes from eng to ZSM in Stage 1 of the Soundscapes Attributes Translation Project (SATP) initiative, and presents the findings of Stage 2 listening tests that investigated ethnonational differences in the translated ZSM PAQ attributes and explored their circumplexity. A cross-cultural listening test was conducted with 100 ZSM speakers from Malaysia and Singapore using the common SATP protocol. The analysis revealed that Malaysian participants from non-native ethnicities (my:o) showed PAQ perceptions more similar to Singapore (sg) participants than native ethnic Malays (MY:M) in Malaysia. Differences between Singapore and Malaysian groups were primarily observed in stimuli related to water features, reflecting cultural and geographical variations. Besides variations in water source-dominant stimuli perception, disparities between MY:M and SG could be mainly attributed to vibrant scores. The findings also suggest that the adoption of region-specific translations, such as membingitkan in Singapore and menjengkelkan in Malaysia, adequately addressed differences in the annoying attribute, as significant differences were observed in one or fewer stimuli across ethnonational groups The circumplexity analysis indicated that the quasi-circumplex model better fit the data compared to the assumed equal angle quasi-circumplex model in ISO/TS 12913-3, although deviations were observed possibly due to respondents' unfamiliarity with the United Kingdom-centric context of the stimulus dataset...

Crossing the Linguistic Causeway: A Binational Approach for Translating Soundscape Attributes to Bahasa Melayu

Translation of perceptual descriptors such as the perceived affective quality attributes in the soundscape standard (ISO/TS 12913-2:2018) is an inherently intricate task, especially if the target language is used in multiple countries. Despite geographical proximity and a shared language of Bahasa Melayu (Standard Malay), differences in culture and language education policies between Singapore and Malaysia could invoke peculiarities in the affective appraisal of sounds. To generate provisional translations of the eight perceived affective attributes -- eventful, vibrant, pleasant, calm, uneventful, monotonous, annoying, and chaotic -- into Bahasa Melayu that is applicable in both Singapore and Malaysia, a binational expert-led approach supplemented by a quantitative evaluation framework was adopted. A set of preliminary translation candidates were developed via a four-stage process, firstly by a qualified translator, which was then vetted by linguistics experts, followed by examination via an experiential evaluation, and finally reviewed by the core research team. A total of 66 participants were then recruited cross-nationally to quantitatively evaluate the preliminary translation candidates. Of the eight attributes, cross-national differences were observed only in the translation of annoying. For instance, "menjengkelkan" was found to be significantly less understood in Singapore than in Malaysia, as well as less understandable than "membingitkan" within Singapore. Results of the quantitative evaluation also revealed the imperfect nature of foreign language translations for perceptual descriptors, which suggests a possibility for exploring corrective measures.

GAEA: A Geolocation Aware Conversational Model

Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) proprietary and open-source researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose a comprehensive dataset GAEA with 800K images and around 1.6M question answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available

Empirical evidence of Large Language Model's influence on human spoken communication

From the invention of writing and the printing press, to television and social media, human history is punctuated by major innovations in communication technology, which fundamentally altered how ideas spread and reshaped our culture. Recent chatbots powered by generative artificial intelligence constitute a novel medium that encodes cultural patterns in their neural representations and disseminates them in conversations with hundreds of millions of people. Understanding whether these patterns transmit into human language, and ultimately shape human culture, is a fundamental question. While fully quantifying the causal impact of a chatbot like ChatGPT on human culture is very challenging, lexicographic shift in human spoken communication may offer an early indicator of such broad phenomenon. Here, we apply econometric causal inference techniques to 740,249 hours of human discourse from 360,445 YouTube academic talks and 771,591 conversational podcast episodes across multiple disciplines. We detect a measurable and abrupt increase in the use of words preferentially generated by ChatGPT, such as delve, comprehend, boast, swift, and meticulous, after its release. These findings suggest a scenario where machines, originally trained on human data and subsequently exhibiting their own cultural traits, can, in turn, measurably reshape human culture. This marks the beginning of a closed cultural feedback loop in which cultural traits circulate bidirectionally between humans and machines. Our results motivate further research into the evolution of human-machine culture, and raise concerns over the erosion of linguistic and cultural diversity, and the risks of scalable manipulation.

This Land is {Your, My} Land: Evaluating Geopolitical Biases in Language Models

Do the Spratly Islands belong to China, the Philippines, or Vietnam? A pretrained large language model (LLM) may answer differently if asked in the languages of each claimant country: Chinese, Tagalog, or Vietnamese. This contrasts with a multilingual human, who would likely answer consistently. In this paper, we show that LLMs recall certain geographical knowledge inconsistently when queried in different languages -- a phenomenon we term geopolitical bias. As a targeted case study, we consider territorial disputes, an inherently controversial and multilingual task. We introduce BorderLines, a dataset of territorial disputes which covers 251 territories, each associated with a set of multiple-choice questions in the languages of each claimant country (49 languages in total). We also propose a suite of evaluation metrics to precisely quantify bias and consistency in responses across different languages. We then evaluate various multilingual LLMs on our dataset and metrics to probe their internal knowledge and use the proposed metrics to discover numerous inconsistencies in how these models respond in different languages. Finally, we explore several prompt modification strategies, aiming to either amplify or mitigate geopolitical bias, which highlights how brittle LLMs are and how they tailor their responses depending on cues from the interaction context. Our code and data are available at https://github.com/manestay/borderlines

Large Language Models Reflect the Ideology of their Creators

Large language models (LLMs) are trained on vast amounts of data to generate natural language, enabling them to perform tasks like text summarization and question answering. These models have become popular in artificial intelligence (AI) assistants like ChatGPT and already play an influential role in how humans access information. However, the behavior of LLMs varies depending on their design, training, and use. In this paper, we uncover notable diversity in the ideological stance exhibited across different LLMs and languages in which they are accessed. We do this by prompting a diverse panel of popular LLMs to describe a large number of prominent and controversial personalities from recent world history, both in English and in Chinese. By identifying and analyzing moral assessments reflected in the generated descriptions, we find consistent normative differences between how the same LLM responds in Chinese compared to English. Similarly, we identify normative disagreements between Western and non-Western LLMs about prominent actors in geopolitical conflicts. Furthermore, popularly hypothesized disparities in political goals among Western models are reflected in significant normative differences related to inclusion, social inequality, and political scandals. Our results show that the ideological stance of an LLM often reflects the worldview of its creators. This raises important concerns around technological and regulatory efforts with the stated aim of making LLMs ideologically `unbiased', and it poses risks for political instrumentalization.

JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation

Accelerating research on Large Multimodal Models (LMMs) in non-English languages is crucial for enhancing user experiences across broader populations. In this paper, we introduce JMMMU (Japanese MMMU), the first large-scale Japanese benchmark designed to evaluate LMMs on expert-level tasks based on the Japanese cultural context. To facilitate comprehensive culture-aware evaluation, JMMMU features two complementary subsets: (i) culture-agnostic (CA) subset, where the culture-independent subjects (e.g., Math) are selected and translated into Japanese, enabling one-to-one comparison with its English counterpart MMMU; and (ii) culture-specific (CS) subset, comprising newly crafted subjects that reflect Japanese cultural context. Using the CA subset, we observe performance drop in many LMMs when evaluated in Japanese, which is purely attributable to language variation. Using the CS subset, we reveal their inadequate Japanese cultural understanding. Further, by combining both subsets, we identify that some LMMs perform well on the CA subset but not on the CS subset, exposing a shallow understanding of the Japanese language that lacks depth in cultural understanding. We hope this work will not only help advance LMM performance in Japanese but also serve as a guideline to create high-standard, culturally diverse benchmarks for multilingual LMM development. The project page is https://mmmu-japanese-benchmark.github.io/JMMMU/.

VNHSGE: VietNamese High School Graduation Examination Dataset for Large Language Models

The VNHSGE (VietNamese High School Graduation Examination) dataset, developed exclusively for evaluating large language models (LLMs), is introduced in this article. The dataset, which covers nine subjects, was generated from the Vietnamese National High School Graduation Examination and comparable tests. 300 literary essays have been included, and there are over 19,000 multiple-choice questions on a range of topics. The dataset assesses LLMs in multitasking situations such as question answering, text generation, reading comprehension, visual question answering, and more by including both textual data and accompanying images. Using ChatGPT and BingChat, we evaluated LLMs on the VNHSGE dataset and contrasted their performance with that of Vietnamese students to see how well they performed. The results show that ChatGPT and BingChat both perform at a human level in a number of areas, including literature, English, history, geography, and civics education. They still have space to grow, though, especially in the areas of mathematics, physics, chemistry, and biology. The VNHSGE dataset seeks to provide an adequate benchmark for assessing the abilities of LLMs with its wide-ranging coverage and variety of activities. We intend to promote future developments in the creation of LLMs by making this dataset available to the scientific community, especially in resolving LLMs' limits in disciplines involving mathematics and the natural sciences.

SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines

Large language models (LLMs) have demonstrated remarkable proficiency in mainstream academic disciplines such as mathematics, physics, and computer science. However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks. The capabilities of LLMs in many of these specialized fields-particularly in light industry, agriculture, and service-oriented disciplines-remain inadequately evaluated. To address this gap, we present SuperGPQA, a comprehensive benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines. Our benchmark employs a novel Human-LLM collaborative filtering mechanism to eliminate trivial or ambiguous questions through iterative refinement based on both LLM responses and expert feedback. Our experimental results reveal significant room for improvement in the performance of current state-of-the-art LLMs across diverse knowledge domains (e.g., the reasoning-focused model DeepSeek-R1 achieved the highest accuracy of 61.82% on SuperGPQA), highlighting the considerable gap between current model capabilities and artificial general intelligence. Additionally, we present comprehensive insights from our management of a large-scale annotation process, involving over 80 expert annotators and an interactive Human-LLM collaborative system, offering valuable methodological guidance for future research initiatives of comparable scope.

A Dataset for Greek Traditional and Folk Music: Lyra

Studying under-represented music traditions under the MIR scope is crucial, not only for developing novel analysis tools, but also for unveiling musical functions that might prove useful in studying world musics. This paper presents a dataset for Greek Traditional and Folk music that includes 1570 pieces, summing in around 80 hours of data. The dataset incorporates YouTube timestamped links for retrieving audio and video, along with rich metadata information with regards to instrumentation, geography and genre, among others. The content has been collected from a Greek documentary series that is available online, where academics present music traditions of Greece with live music and dance performance during the show, along with discussions about social, cultural and musicological aspects of the presented music. Therefore, this procedure has resulted in a significant wealth of descriptions regarding a variety of aspects, such as musical genre, places of origin and musical instruments. In addition, the audio recordings were performed under strict production-level specifications, in terms of recording equipment, leading to very clean and homogeneous audio content. In this work, apart from presenting the dataset in detail, we propose a baseline deep-learning classification approach to recognize the involved musicological attributes. The dataset, the baseline classification methods and the models are provided in public repositories. Future directions for further refining the dataset are also discussed.

JiraiBench: A Bilingual Benchmark for Evaluating Large Language Models' Detection of Human Self-Destructive Behavior Content in Jirai Community

This paper introduces JiraiBench, the first bilingual benchmark for evaluating large language models' effectiveness in detecting self-destructive content across Chinese and Japanese social media communities. Focusing on the transnational "Jirai" (landmine) online subculture that encompasses multiple forms of self-destructive behaviors including drug overdose, eating disorders, and self-harm, we present a comprehensive evaluation framework incorporating both linguistic and cultural dimensions. Our dataset comprises 10,419 Chinese posts and 5,000 Japanese posts with multidimensional annotation along three behavioral categories, achieving substantial inter-annotator agreement. Experimental evaluations across four state-of-the-art models reveal significant performance variations based on instructional language, with Japanese prompts unexpectedly outperforming Chinese prompts when processing Chinese content. This emergent cross-cultural transfer suggests that cultural proximity can sometimes outweigh linguistic similarity in detection tasks. Cross-lingual transfer experiments with fine-tuned models further demonstrate the potential for knowledge transfer between these language systems without explicit target language training. These findings highlight the need for culturally-informed approaches to multilingual content moderation and provide empirical evidence for the importance of cultural context in developing more effective detection systems for vulnerable online communities.

No Language Data Left Behind: A Comparative Study of CJK Language Datasets in the Hugging Face Ecosystem

Recent advances in Natural Language Processing (NLP) have underscored the crucial role of high-quality datasets in building large language models (LLMs). However, while extensive resources and analyses exist for English, the landscape for East Asian languages - particularly Chinese, Japanese, and Korean (CJK) - remains fragmented and underexplored, despite these languages together serving over 1.6 billion speakers. To address this gap, we investigate the HuggingFace ecosystem from a cross-linguistic perspective, focusing on how cultural norms, research environments, and institutional practices shape dataset availability and quality. Drawing on more than 3,300 datasets, we employ quantitative and qualitative methods to examine how these factors drive distinct creation and curation patterns across Chinese, Japanese, and Korean NLP communities. Our findings highlight the large-scale and often institution-driven nature of Chinese datasets, grassroots community-led development in Korean NLP, and an entertainment- and subculture-focused emphasis on Japanese collections. By uncovering these patterns, we reveal practical strategies for enhancing dataset documentation, licensing clarity, and cross-lingual resource sharing - ultimately guiding more effective and culturally attuned LLM development in East Asia. We conclude by discussing best practices for future dataset curation and collaboration, aiming to strengthen resource development across all three languages.

Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis

Warning: this paper contains content that may be offensive or upsetting. Most hate speech datasets neglect the cultural diversity within a single language, resulting in a critical shortcoming in hate speech detection. To address this, we introduce CREHate, a CRoss-cultural English Hate speech dataset. To construct CREHate, we follow a two-step procedure: 1) cultural post collection and 2) cross-cultural annotation. We sample posts from the SBIC dataset, which predominantly represents North America, and collect posts from four geographically diverse English-speaking countries (Australia, United Kingdom, Singapore, and South Africa) using culturally hateful keywords we retrieve from our survey. Annotations are collected from the four countries plus the United States to establish representative labels for each country. Our analysis highlights statistically significant disparities across countries in hate speech annotations. Only 56.2% of the posts in CREHate achieve consensus among all countries, with the highest pairwise label difference rate of 26%. Qualitative analysis shows that label disagreement occurs mostly due to different interpretations of sarcasm and the personal bias of annotators on divisive topics. Lastly, we evaluate large language models (LLMs) under a zero-shot setting and show that current LLMs tend to show higher accuracies on Anglosphere country labels in CREHate. Our dataset and codes are available at: https://github.com/nlee0212/CREHate