- Adversarial Attacks and Defences Competition To accelerate research on adversarial examples and robustness of machine learning classifiers, Google Brain organized a NIPS 2017 competition that encouraged researchers to develop new methods to generate adversarial examples as well as to develop new ways to defend against them. In this chapter, we describe the structure and organization of the competition and the solutions developed by several of the top-placing teams. 23 authors · Mar 30, 2018
2 Baseline Defenses for Adversarial Attacks Against Aligned Language Models As Large Language Models quickly become ubiquitous, it becomes critical to understand their security vulnerabilities. Recent work shows that text optimizers can produce jailbreaking prompts that bypass moderation and alignment. Drawing from the rich body of work on adversarial machine learning, we approach these attacks with three questions: What threat models are practically useful in this domain? How do baseline defense techniques perform in this new domain? How does LLM security differ from computer vision? We evaluate several baseline defense strategies against leading adversarial attacks on LLMs, discussing the various settings in which each is feasible and effective. Particularly, we look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training. We discuss white-box and gray-box settings and discuss the robustness-performance trade-off for each of the defenses considered. We find that the weakness of existing discrete optimizers for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs. Future research will be needed to uncover whether more powerful optimizers can be developed, or whether the strength of filtering and preprocessing defenses is greater in the LLMs domain than it has been in computer vision. 10 authors · Sep 1, 2023
- LLM Defenses Are Not Robust to Multi-Turn Human Jailbreaks Yet Recent large language model (LLM) defenses have greatly improved models' ability to refuse harmful queries, even when adversarially attacked. However, LLM defenses are primarily evaluated against automated adversarial attacks in a single turn of conversation, an insufficient threat model for real-world malicious use. We demonstrate that multi-turn human jailbreaks uncover significant vulnerabilities, exceeding 70% attack success rate (ASR) on HarmBench against defenses that report single-digit ASRs with automated single-turn attacks. Human jailbreaks also reveal vulnerabilities in machine unlearning defenses, successfully recovering dual-use biosecurity knowledge from unlearned models. We compile these results into Multi-Turn Human Jailbreaks (MHJ), a dataset of 2,912 prompts across 537 multi-turn jailbreaks. We publicly release MHJ alongside a compendium of jailbreak tactics developed across dozens of commercial red teaming engagements, supporting research towards stronger LLM defenses. 9 authors · Aug 27, 2024
- Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks Recent work has proposed stateful defense models (SDMs) as a compelling strategy to defend against a black-box attacker who only has query access to the model, as is common for online machine learning platforms. Such stateful defenses aim to defend against black-box attacks by tracking the query history and detecting and rejecting queries that are "similar" and thus preventing black-box attacks from finding useful gradients and making progress towards finding adversarial attacks within a reasonable query budget. Recent SDMs (e.g., Blacklight and PIHA) have shown remarkable success in defending against state-of-the-art black-box attacks. In this paper, we show that SDMs are highly vulnerable to a new class of adaptive black-box attacks. We propose a novel adaptive black-box attack strategy called Oracle-guided Adaptive Rejection Sampling (OARS) that involves two stages: (1) use initial query patterns to infer key properties about an SDM's defense; and, (2) leverage those extracted properties to design subsequent query patterns to evade the SDM's defense while making progress towards finding adversarial inputs. OARS is broadly applicable as an enhancement to existing black-box attacks - we show how to apply the strategy to enhance six common black-box attacks to be more effective against current class of SDMs. For example, OARS-enhanced versions of black-box attacks improved attack success rate against recent stateful defenses from almost 0% to to almost 100% for multiple datasets within reasonable query budgets. 6 authors · Mar 10, 2023
- In defence of metric learning for speaker recognition The objective of this paper is 'open-set' speaker recognition of unseen speakers, where ideal embeddings should be able to condense information into a compact utterance-level representation that has small intra-speaker and large inter-speaker distance. A popular belief in speaker recognition is that networks trained with classification objectives outperform metric learning methods. In this paper, we present an extensive evaluation of most popular loss functions for speaker recognition on the VoxCeleb dataset. We demonstrate that the vanilla triplet loss shows competitive performance compared to classification-based losses, and those trained with our proposed metric learning objective outperform state-of-the-art methods. 10 authors · Mar 26, 2020
1 Prompt Injection Attacks and Defenses in LLM-Integrated Applications Large Language Models (LLMs) are increasingly deployed as the backend for a variety of real-world applications called LLM-Integrated Applications. Multiple recent works showed that LLM-Integrated Applications are vulnerable to prompt injection attacks, in which an attacker injects malicious instruction/data into the input of those applications such that they produce results as the attacker desires. However, existing works are limited to case studies. As a result, the literature lacks a systematic understanding of prompt injection attacks and their defenses. We aim to bridge the gap in this work. In particular, we propose a general framework to formalize prompt injection attacks. Existing attacks, which are discussed in research papers and blog posts, are special cases in our framework. Our framework enables us to design a new attack by combining existing attacks. Moreover, we also propose a framework to systematize defenses against prompt injection attacks. Using our frameworks, we conduct a systematic evaluation on prompt injection attacks and their defenses with 10 LLMs and 7 tasks. We hope our frameworks can inspire future research in this field. Our code is available at https://github.com/liu00222/Open-Prompt-Injection. 5 authors · Oct 19, 2023
- How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation Jailbreak attacks, where harmful prompts bypass generative models' built-in safety, raise serious concerns about model vulnerability. While many defense methods have been proposed, the trade-offs between safety and helpfulness, and their application to Large Vision-Language Models (LVLMs), are not well understood. This paper systematically examines jailbreak defenses by reframing the standard generation task as a binary classification problem to assess model refusal tendencies for both harmful and benign queries. We identify two key defense mechanisms: safety shift, which increases refusal rates across all queries, and harmfulness discrimination, which improves the model's ability to distinguish between harmful and benign inputs. Using these mechanisms, we develop two ensemble defense strategies-inter-mechanism ensembles and intra-mechanism ensembles-to balance safety and helpfulness. Experiments on the MM-SafetyBench and MOSSBench datasets with LLaVA-1.5 models show that these strategies effectively improve model safety or optimize the trade-off between safety and helpfulness. 6 authors · Feb 20
- Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models Large Language Models (LLMs) have become a cornerstone in the field of Natural Language Processing (NLP), offering transformative capabilities in understanding and generating human-like text. However, with their rising prominence, the security and vulnerability aspects of these models have garnered significant attention. This paper presents a comprehensive survey of the various forms of attacks targeting LLMs, discussing the nature and mechanisms of these attacks, their potential impacts, and current defense strategies. We delve into topics such as adversarial attacks that aim to manipulate model outputs, data poisoning that affects model training, and privacy concerns related to training data exploitation. The paper also explores the effectiveness of different attack methodologies, the resilience of LLMs against these attacks, and the implications for model integrity and user trust. By examining the latest research, we provide insights into the current landscape of LLM vulnerabilities and defense mechanisms. Our objective is to offer a nuanced understanding of LLM attacks, foster awareness within the AI community, and inspire robust solutions to mitigate these risks in future developments. 7 authors · Mar 2, 2024
- Geometric Adversarial Attacks and Defenses on 3D Point Clouds Deep neural networks are prone to adversarial examples that maliciously alter the network's outcome. Due to the increasing popularity of 3D sensors in safety-critical systems and the vast deployment of deep learning models for 3D point sets, there is a growing interest in adversarial attacks and defenses for such models. So far, the research has focused on the semantic level, namely, deep point cloud classifiers. However, point clouds are also widely used in a geometric-related form that includes encoding and reconstructing the geometry. In this work, we are the first to consider the problem of adversarial examples at a geometric level. In this setting, the question is how to craft a small change to a clean source point cloud that leads, after passing through an autoencoder model, to the reconstruction of a different target shape. Our attack is in sharp contrast to existing semantic attacks on 3D point clouds. While such works aim to modify the predicted label by a classifier, we alter the entire reconstructed geometry. Additionally, we demonstrate the robustness of our attack in the case of defense, where we show that remnant characteristics of the target shape are still present at the output after applying the defense to the adversarial input. Our code is publicly available at https://github.com/itailang/geometric_adv. 3 authors · Dec 10, 2020
- Adversarial Attacks and Defenses on Graphs: A Review, A Tool and Empirical Studies Deep neural networks (DNNs) have achieved significant performance in various tasks. However, recent studies have shown that DNNs can be easily fooled by small perturbation on the input, called adversarial attacks. As the extensions of DNNs to graphs, Graph Neural Networks (GNNs) have been demonstrated to inherit this vulnerability. Adversary can mislead GNNs to give wrong predictions by modifying the graph structure such as manipulating a few edges. This vulnerability has arisen tremendous concerns for adapting GNNs in safety-critical applications and has attracted increasing research attention in recent years. Thus, it is necessary and timely to provide a comprehensive overview of existing graph adversarial attacks and the countermeasures. In this survey, we categorize existing attacks and defenses, and review the corresponding state-of-the-art methods. Furthermore, we have developed a repository with representative algorithms (https://github.com/DSE-MSU/DeepRobust/tree/master/deeprobust/graph). The repository enables us to conduct empirical studies to deepen our understandings on attacks and defenses on graphs. 7 authors · Mar 1, 2020
- Adversarial Attacks and Defenses in Images, Graphs and Text: A Review Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text. 7 authors · Sep 17, 2019
24 X-Teaming: Multi-Turn Jailbreaks and Defenses with Adaptive Multi-Agents Multi-turn interactions with language models (LMs) pose critical safety risks, as harmful intent can be strategically spread across exchanges. Yet, the vast majority of prior work has focused on single-turn safety, while adaptability and diversity remain among the key challenges of multi-turn red-teaming. To address these challenges, we present X-Teaming, a scalable framework that systematically explores how seemingly harmless interactions escalate into harmful outcomes and generates corresponding attack scenarios. X-Teaming employs collaborative agents for planning, attack optimization, and verification, achieving state-of-the-art multi-turn jailbreak effectiveness and diversity with success rates up to 98.1% across representative leading open-weight and closed-source models. In particular, X-Teaming achieves a 96.2% attack success rate against the latest Claude 3.7 Sonnet model, which has been considered nearly immune to single-turn attacks. Building on X-Teaming, we introduce XGuard-Train, an open-source multi-turn safety training dataset that is 20x larger than the previous best resource, comprising 30K interactive jailbreaks, designed to enable robust multi-turn safety alignment for LMs. Our work offers essential tools and insights for mitigating sophisticated conversational attacks, advancing the multi-turn safety of LMs. 10 authors · Apr 15 1
2 Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions Large language models, despite extensive alignment with human values and ethical principles, remain vulnerable to sophisticated jailbreak attacks that exploit their reasoning abilities. Existing safety measures often detect overt malicious intent but fail to address subtle, reasoning-driven vulnerabilities. In this work, we introduce POATE (Polar Opposite query generation, Adversarial Template construction, and Elaboration), a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses. POATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety. We conduct extensive evaluation across six diverse language model families of varying parameter sizes to demonstrate the robustness of the attack, achieving significantly higher attack success rates (~44%) compared to existing methods. To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses. These methods enhance reasoning robustness and strengthen the model's defense against adversarial exploits. 3 authors · Jan 3
1 Deep Learning Model Security: Threats and Defenses Deep learning has transformed AI applications but faces critical security challenges, including adversarial attacks, data poisoning, model theft, and privacy leakage. This survey examines these vulnerabilities, detailing their mechanisms and impact on model integrity and confidentiality. Practical implementations, including adversarial examples, label flipping, and backdoor attacks, are explored alongside defenses such as adversarial training, differential privacy, and federated learning, highlighting their strengths and limitations. Advanced methods like contrastive and self-supervised learning are presented for enhancing robustness. The survey concludes with future directions, emphasizing automated defenses, zero-trust architectures, and the security challenges of large AI models. A balanced approach to performance and security is essential for developing reliable deep learning systems. 27 authors · Dec 12, 2024
- Harmful Fine-tuning Attacks and Defenses for Large Language Models: A Survey Recent research demonstrates that the nascent fine-tuning-as-a-service business model exposes serious safety concerns -- fine-tuning over a few harmful data uploaded by the users can compromise the safety alignment of the model. The attack, known as harmful fine-tuning, has raised a broad research interest among the community. However, as the attack is still new, we observe from our miserable submission experience that there are general misunderstandings within the research community. We in this paper aim to clear some common concerns for the attack setting, and formally establish the research problem. Specifically, we first present the threat model of the problem, and introduce the harmful fine-tuning attack and its variants. Then we systematically survey the existing literature on attacks/defenses/mechanical analysis of the problem. Finally, we outline future research directions that might contribute to the development of the field. Additionally, we present a list of questions of interest, which might be useful to refer to when reviewers in the peer review process question the realism of the experiment/attack/defense setting. A curated list of relevant papers is maintained and made accessible at: https://github.com/git-disl/awesome_LLM-harmful-fine-tuning-papers. 5 authors · Sep 26, 2024
1 Improved Few-Shot Jailbreaking Can Circumvent Aligned Language Models and Their Defenses Recently, Anil et al. (2024) show that many-shot (up to hundreds of) demonstrations can jailbreak state-of-the-art LLMs by exploiting their long-context capability. Nevertheless, is it possible to use few-shot demonstrations to efficiently jailbreak LLMs within limited context sizes? While the vanilla few-shot jailbreaking may be inefficient, we propose improved techniques such as injecting special system tokens like [/INST] and employing demo-level random search from a collected demo pool. These simple techniques result in surprisingly effective jailbreaking against aligned LLMs (even with advanced defenses). For examples, our method achieves >80% (mostly >95%) ASRs on Llama-2-7B and Llama-3-8B without multiple restarts, even if the models are enhanced by strong defenses such as perplexity detection and/or SmoothLLM, which is challenging for suffix-based jailbreaking. In addition, we conduct comprehensive and elaborate (e.g., making sure to use correct system prompts) evaluations against other aligned LLMs and advanced defenses, where our method consistently achieves nearly 100% ASRs. Our code is available at https://github.com/sail-sg/I-FSJ. 6 authors · Jun 3, 2024
- Expose Before You Defend: Unifying and Enhancing Backdoor Defenses via Exposed Models Backdoor attacks covertly implant triggers into deep neural networks (DNNs) by poisoning a small portion of the training data with pre-designed backdoor triggers. This vulnerability is exacerbated in the era of large models, where extensive (pre-)training on web-crawled datasets is susceptible to compromise. In this paper, we introduce a novel two-step defense framework named Expose Before You Defend (EBYD). EBYD unifies existing backdoor defense methods into a comprehensive defense system with enhanced performance. Specifically, EBYD first exposes the backdoor functionality in the backdoored model through a model preprocessing step called backdoor exposure, and then applies detection and removal methods to the exposed model to identify and eliminate the backdoor features. In the first step of backdoor exposure, we propose a novel technique called Clean Unlearning (CUL), which proactively unlearns clean features from the backdoored model to reveal the hidden backdoor features. We also explore various model editing/modification techniques for backdoor exposure, including fine-tuning, model sparsification, and weight perturbation. Using EBYD, we conduct extensive experiments on 10 image attacks and 6 text attacks across 2 vision datasets (CIFAR-10 and an ImageNet subset) and 4 language datasets (SST-2, IMDB, Twitter, and AG's News). The results demonstrate the importance of backdoor exposure for backdoor defense, showing that the exposed models can significantly benefit a range of downstream defense tasks, including backdoor label detection, backdoor trigger recovery, backdoor model detection, and backdoor removal. We hope our work could inspire more research in developing advanced defense frameworks with exposed models. Our code is available at: https://github.com/bboylyg/Expose-Before-You-Defend. 5 authors · Oct 25, 2024
- Agent Security Bench (ASB): Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents Although LLM-based agents, powered by Large Language Models (LLMs), can use external tools and memory mechanisms to solve complex real-world tasks, they may also introduce critical security vulnerabilities. However, the existing literature does not comprehensively evaluate attacks and defenses against LLM-based agents. To address this, we introduce Agent Security Bench (ASB), a comprehensive framework designed to formalize, benchmark, and evaluate the attacks and defenses of LLM-based agents, including 10 scenarios (e.g., e-commerce, autonomous driving, finance), 10 agents targeting the scenarios, over 400 tools, 23 different types of attack/defense methods, and 8 evaluation metrics. Based on ASB, we benchmark 10 prompt injection attacks, a memory poisoning attack, a novel Plan-of-Thought backdoor attack, a mixed attack, and 10 corresponding defenses across 13 LLM backbones with nearly 90,000 testing cases in total. Our benchmark results reveal critical vulnerabilities in different stages of agent operation, including system prompt, user prompt handling, tool usage, and memory retrieval, with the highest average attack success rate of 84.30\%, but limited effectiveness shown in current defenses, unveiling important works to be done in terms of agent security for the community. Our code can be found at https://github.com/agiresearch/ASB. 8 authors · Oct 3, 2024
- AgentDojo: A Dynamic Environment to Evaluate Attacks and Defenses for LLM Agents AI agents aim to solve complex tasks by combining text-based reasoning with external tool calls. Unfortunately, AI agents are vulnerable to prompt injection attacks where data returned by external tools hijacks the agent to execute malicious tasks. To measure the adversarial robustness of AI agents, we introduce AgentDojo, an evaluation framework for agents that execute tools over untrusted data. To capture the evolving nature of attacks and defenses, AgentDojo is not a static test suite, but rather an extensible environment for designing and evaluating new agent tasks, defenses, and adaptive attacks. We populate the environment with 97 realistic tasks (e.g., managing an email client, navigating an e-banking website, or making travel bookings), 629 security test cases, and various attack and defense paradigms from the literature. We find that AgentDojo poses a challenge for both attacks and defenses: state-of-the-art LLMs fail at many tasks (even in the absence of attacks), and existing prompt injection attacks break some security properties but not all. We hope that AgentDojo can foster research on new design principles for AI agents that solve common tasks in a reliable and robust manner. We release the code for AgentDojo at https://github.com/ethz-spylab/agentdojo. 6 authors · Jun 19, 2024
- AES Systems Are Both Overstable And Oversensitive: Explaining Why And Proposing Defenses Deep-learning based Automatic Essay Scoring (AES) systems are being actively used by states and language testing agencies alike to evaluate millions of candidates for life-changing decisions ranging from college applications to visa approvals. However, little research has been put to understand and interpret the black-box nature of deep-learning based scoring algorithms. Previous studies indicate that scoring models can be easily fooled. In this paper, we explore the reason behind their surprising adversarial brittleness. We utilize recent advances in interpretability to find the extent to which features such as coherence, content, vocabulary, and relevance are important for automated scoring mechanisms. We use this to investigate the oversensitivity i.e., large change in output score with a little change in input essay content) and overstability i.e., little change in output scores with large changes in input essay content) of AES. Our results indicate that autoscoring models, despite getting trained as "end-to-end" models with rich contextual embeddings such as BERT, behave like bag-of-words models. A few words determine the essay score without the requirement of any context making the model largely overstable. This is in stark contrast to recent probing studies on pre-trained representation learning models, which show that rich linguistic features such as parts-of-speech and morphology are encoded by them. Further, we also find that the models have learnt dataset biases, making them oversensitive. To deal with these issues, we propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies. We find that our proposed models are able to detect unusual attribution patterns and flag adversarial samples successfully. 6 authors · Sep 23, 2021
- Likelihood Landscapes: A Unifying Principle Behind Many Adversarial Defenses Convolutional Neural Networks have been shown to be vulnerable to adversarial examples, which are known to locate in subspaces close to where normal data lies but are not naturally occurring and of low probability. In this work, we investigate the potential effect defense techniques have on the geometry of the likelihood landscape - likelihood of the input images under the trained model. We first propose a way to visualize the likelihood landscape leveraging an energy-based model interpretation of discriminative classifiers. Then we introduce a measure to quantify the flatness of the likelihood landscape. We observe that a subset of adversarial defense techniques results in a similar effect of flattening the likelihood landscape. We further explore directly regularizing towards a flat landscape for adversarial robustness. 5 authors · Aug 25, 2020
- DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses DeepRobust is a PyTorch adversarial learning library which aims to build a comprehensive and easy-to-use platform to foster this research field. It currently contains more than 10 attack algorithms and 8 defense algorithms in image domain and 9 attack algorithms and 4 defense algorithms in graph domain, under a variety of deep learning architectures. In this manual, we introduce the main contents of DeepRobust with detailed instructions. The library is kept updated and can be found at https://github.com/DSE-MSU/DeepRobust. 4 authors · May 13, 2020
1 FRACTURED-SORRY-Bench: Framework for Revealing Attacks in Conversational Turns Undermining Refusal Efficacy and Defenses over SORRY-Bench This paper introduces FRACTURED-SORRY-Bench, a framework for evaluating the safety of Large Language Models (LLMs) against multi-turn conversational attacks. Building upon the SORRY-Bench dataset, we propose a simple yet effective method for generating adversarial prompts by breaking down harmful queries into seemingly innocuous sub-questions. Our approach achieves a maximum increase of +46.22\% in Attack Success Rates (ASRs) across GPT-4, GPT-4o, GPT-4o-mini, and GPT-3.5-Turbo models compared to baseline methods. We demonstrate that this technique poses a challenge to current LLM safety measures and highlights the need for more robust defenses against subtle, multi-turn attacks. 2 authors · Aug 28, 2024
1 Privacy in Large Language Models: Attacks, Defenses and Future Directions The advancement of large language models (LLMs) has significantly enhanced the ability to effectively tackle various downstream NLP tasks and unify these tasks into generative pipelines. On the one hand, powerful language models, trained on massive textual data, have brought unparalleled accessibility and usability for both models and users. On the other hand, unrestricted access to these models can also introduce potential malicious and unintentional privacy risks. Despite ongoing efforts to address the safety and privacy concerns associated with LLMs, the problem remains unresolved. In this paper, we provide a comprehensive analysis of the current privacy attacks targeting LLMs and categorize them according to the adversary's assumed capabilities to shed light on the potential vulnerabilities present in LLMs. Then, we present a detailed overview of prominent defense strategies that have been developed to counter these privacy attacks. Beyond existing works, we identify upcoming privacy concerns as LLMs evolve. Lastly, we point out several potential avenues for future exploration. 8 authors · Oct 16, 2023
1 A Survey of Safety on Large Vision-Language Models: Attacks, Defenses and Evaluations With the rapid advancement of Large Vision-Language Models (LVLMs), ensuring their safety has emerged as a crucial area of research. This survey provides a comprehensive analysis of LVLM safety, covering key aspects such as attacks, defenses, and evaluation methods. We introduce a unified framework that integrates these interrelated components, offering a holistic perspective on the vulnerabilities of LVLMs and the corresponding mitigation strategies. Through an analysis of the LVLM lifecycle, we introduce a classification framework that distinguishes between inference and training phases, with further subcategories to provide deeper insights. Furthermore, we highlight limitations in existing research and outline future directions aimed at strengthening the robustness of LVLMs. As part of our research, we conduct a set of safety evaluations on the latest LVLM, Deepseek Janus-Pro, and provide a theoretical analysis of the results. Our findings provide strategic recommendations for advancing LVLM safety and ensuring their secure and reliable deployment in high-stakes, real-world applications. This survey aims to serve as a cornerstone for future research, facilitating the development of models that not only push the boundaries of multimodal intelligence but also adhere to the highest standards of security and ethical integrity. Furthermore, to aid the growing research in this field, we have created a public repository to continuously compile and update the latest work on LVLM safety: https://github.com/XuankunRong/Awesome-LVLM-Safety . 6 authors · Feb 14
- ImpNet: Imperceptible and blackbox-undetectable backdoors in compiled neural networks Early backdoor attacks against machine learning set off an arms race in attack and defence development. Defences have since appeared demonstrating some ability to detect backdoors in models or even remove them. These defences work by inspecting the training data, the model, or the integrity of the training procedure. In this work, we show that backdoors can be added during compilation, circumventing any safeguards in the data preparation and model training stages. As an illustration, the attacker can insert weight-based backdoors during the hardware compilation step that will not be detected by any training or data-preparation process. Next, we demonstrate that some backdoors, such as ImpNet, can only be reliably detected at the stage where they are inserted and removing them anywhere else presents a significant challenge. We conclude that machine-learning model security requires assurance of provenance along the entire technical pipeline, including the data, model architecture, compiler, and hardware specification. 5 authors · Sep 30, 2022