Papers
arxiv:2508.18159

SpotEdit: Evaluating Visually-Guided Image Editing Methods

Published on Aug 25
· Submitted by taesiri on Aug 26
Authors:
,
,
,

Abstract

SpotEdit is a benchmark for evaluating visually-guided image editing methods, revealing performance disparities and hallucination issues across diffusion, autoregressive, and hybrid generative models.

AI-generated summary

Visually-guided image editing, where edits are conditioned on both visual cues and textual prompts, has emerged as a powerful paradigm for fine-grained, controllable content generation. Although recent generative models have shown remarkable capabilities, existing evaluations remain simple and insufficiently representative of real-world editing challenges. We present SpotEdit, a comprehensive benchmark designed to systematically assess visually-guided image editing methods across diverse diffusion, autoregressive, and hybrid generative models, uncovering substantial performance disparities. To address a critical yet underexplored challenge, our benchmark includes a dedicated component on hallucination, highlighting how leading models, such as GPT-4o, often hallucinate the existence of a visual cue and erroneously perform the editing task. Our code and benchmark are publicly released at https://github.com/SaraGhazanfari/SpotEdit.

Community

Paper submitter

Visually-guided image editing, where edits are conditioned on both visual cues and textual prompts, has emerged as a powerful paradigm for fine-grained, controllable content generation. Although recent generative models have shown remarkable capabilities, existing evaluations remain simple and insufficiently representative of real-world editing challenges. We present SpotEdit, a comprehensive benchmark designed to systematically assess visually-guided image editing methods across diverse diffusion, autoregressive, and hybrid generative models, uncovering substantial performance disparities. To address a critical yet underexplored challenge, our benchmark includes a dedicated component on hallucination, highlighting how leading models, such as GPT-4o, often hallucinate the existence of a visual cue and erroneously perform the editing task.

e5f63df0efef76c6851f88558282734d (1).jpg
add dog in background

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2508.18159 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2508.18159 in a Space README.md to link it from this page.

Collections including this paper 1