Papers
arxiv:2507.22953

CADS: A Comprehensive Anatomical Dataset and Segmentation for Whole-Body Anatomy in Computed Tomography

Published on Jul 29
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

CADS is an open-source framework for whole-body CT segmentation that integrates diverse datasets and uses established architectures to improve performance and clinical utility.

AI-generated summary

Accurate delineation of anatomical structures in volumetric CT scans is crucial for diagnosis and treatment planning. While AI has advanced automated segmentation, current approaches typically target individual structures, creating a fragmented landscape of incompatible models with varying performance and disparate evaluation protocols. Foundational segmentation models address these limitations by providing a holistic anatomical view through a single model. Yet, robust clinical deployment demands comprehensive training data, which is lacking in existing whole-body approaches, both in terms of data heterogeneity and, more importantly, anatomical coverage. In this work, rather than pursuing incremental optimizations in model architecture, we present CADS, an open-source framework that prioritizes the systematic integration, standardization, and labeling of heterogeneous data sources for whole-body CT segmentation. At its core is a large-scale dataset of 22,022 CT volumes with complete annotations for 167 anatomical structures, representing a significant advancement in both scale and coverage, with 18 times more scans than existing collections and 60% more distinct anatomical targets. Building on this diverse dataset, we develop the CADS-model using established architectures for accessible and automated full-body CT segmentation. Through comprehensive evaluation across 18 public datasets and an independent real-world hospital cohort, we demonstrate advantages over SoTA approaches. Notably, thorough testing of the model's performance in segmentation tasks from radiation oncology validates its direct utility for clinical interventions. By making our large-scale dataset, our segmentation models, and our clinical software tool publicly available, we aim to advance robust AI solutions in radiology and make comprehensive anatomical analysis accessible to clinicians and researchers alike.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2507.22953 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2507.22953 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.