Papers
arxiv:2504.03096

Scaling Open-Vocabulary Action Detection

Published on Apr 4
Authors:
,

Abstract

In this work, we focus on scaling open-vocabulary action detection. Existing approaches for action detection are predominantly limited to closed-set scenarios and rely on complex, parameter-heavy architectures. Extending these models to the open-vocabulary setting poses two key challenges: (1) the lack of large-scale datasets with many action classes for robust training, and (2) parameter-heavy adaptations to a pretrained vision-language contrastive model to convert it for detection, risking overfitting the additional non-pretrained parameters to base action classes. Firstly, we introduce an encoder-only multimodal model for video action detection, reducing the reliance on parameter-heavy additions for video action detection. Secondly, we introduce a simple weakly supervised training strategy to exploit an existing closed-set action detection dataset for pretraining. Finally, we depart from the ill-posed base-to-novel benchmark used by prior works in open-vocabulary action detection and devise a new benchmark to evaluate on existing closed-set action detection datasets without ever using them for training, showing novel results to serve as baselines for future work.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2504.03096 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2504.03096 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.