Deep Learning for Sea Surface Temperature Reconstruction under Cloud Occlusion
Abstract
A U-net Convolutional Neural Network model is used to reconstruct cloud-covered areas in MODIS Aqua nighttime L3 images, achieving superior precision compared to OI interpolation algorithms.
Sea Surface Temperature (SST) reconstructions from satellite images affected by cloud gaps have been extensively documented in the past three decades. Here we describe several Machine Learning models to fill the cloud-occluded areas starting from MODIS Aqua nighttime L3 images. To tackle this challenge, we employed a type of Convolutional Neural Network model (U-net) to reconstruct cloud-covered portions of satellite imagery while preserving the integrity of observed values in cloud-free areas. We demonstrate the outstanding precision of U-net with respect to available products done using OI interpolation algorithms. Our best-performing architecture show 50% lower root mean square errors over established gap-filling methods.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper