omark807 commited on
Commit
d0c93f1
verified
1 Parent(s): da2fe5c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -185
README.md CHANGED
@@ -1,202 +1,87 @@
1
  ---
2
  base_model: google/flan-t5-large
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
1
  ---
2
  base_model: google/flan-t5-large
3
  library_name: peft
4
+ tags:
5
+ - text-generation
6
+ - question-answering
7
+ - bias-mitigation
8
+ - flan-t5
9
+ - lora
10
+ - peft
11
+ - disability-rights
12
+ - accessibility
13
+ - social-impact
14
  ---
15
 
16
+ # Flan-T5-Large LoRA Adapter for Disability Q&A and Mitigating Disability Biases
17
 
18
+ ## Model Description
19
 
20
+ This repository contains a LoRA (Low-Rank Adaptation) adapter fine-tuned on the `google/flan-t5-large` base model. The adapter is specifically trained for **improving question-answering capabilities related to disability information and actively reducing harmful biases and stereotypes concerning people with disabilities in generated text.**
21
 
22
+ This model leverages the PEFT (Parameter-Efficient Fine-Tuning) library to efficiently adapt the large Flan-T5 model to this specialized domain without requiring full model retraining, making it more resource-efficient and deployable.
23
 
24
+ - **Developed by:** omark807
25
+ - **Finetuned from model:** `google/flan-t5-large`
26
+ - **Model type:** Adapter (LoRA) for Sequence-to-Sequence Language Model
27
+ - **Language(s) (NLP):** English
28
+ - **License:** GPL
29
 
30
+ ### Base Model Details (`google/flan-t5-large`)
31
 
32
+ Flan-T5 is an instruction-tuned variant of the T5 text-to-text transformer model. It has been fine-tuned on a collection of datasets expressed as natural language instructions. The "large" version has approximately 770 million parameters. This adapter builds upon its strong instruction-following capabilities.
33
 
34
+ * **Original Model Card:** [https://huggingface.co/google/flan-t5-large](https://huggingface.co/google/flan-t5-large)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  ## Uses
37
 
 
 
38
  ### Direct Use
39
 
40
+ This adapter is intended to be loaded alongside the `google/flan-t5-large` model using the PEFT library. It can then be used for:
41
+
42
+ * **Answering questions** related to various aspects of disability, accessibility, disability rights, legislation, and common challenges.
43
+ * **Generating responses** that are more inclusive, respectful, and free from common disability biases and stereotypes.
44
+ * **Providing information** in a neutral and empathetic tone when discussing disability-related topics.
45
+
46
+ **Example Inference for Q&A:**
47
+ ```python
48
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
49
+ from peft import PeftModel, PeftConfig
50
+ import torch
51
+
52
+ # Load the base model
53
+ model_name = "google/flan-t5-large"
54
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
55
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
56
+
57
+ # Load your adapter
58
+ # Replace "your-huggingface-username/your-repo-name" with your actual model ID
59
+ adapter_model_id = "[your-huggingface-username]/[your-repo-name]"
60
+ model = PeftModel.from_pretrained(model, adapter_model_id)
61
+ model.eval() # Set model to evaluation mode
62
+
63
+ # Example inference for Q&A
64
+ # Input: "What is the Americans with Disabilities Act (ADA)?"
65
+ # Expected Output: A concise explanation of the ADA.
66
+ input_text_qa = "question: What is the Americans with Disabilities Act (ADA)?"
67
+ input_ids_qa = tokenizer(input_text_qa, return_tensors="pt").input_ids
68
+
69
+ with torch.no_grad():
70
+ outputs_qa = model.generate(input_ids_qa, max_new_tokens=100, num_beams=5, early_stopping=True)
71
+
72
+ decoded_output_qa = tokenizer.decode(outputs_qa[0], skip_special_tokens=True)
73
+ print(f"Input (Q&A): {input_text_qa}")
74
+ print(f"Output (Q&A): {decoded_output_qa}")
75
+
76
+ # Example inference for Bias Mitigation/Instruction Following
77
+ # Input: "Rewrite the following sentence to remove any ableist language: 'He was confined to a wheelchair.'"
78
+ # Expected Output: "He used a wheelchair." or similar respectful phrasing.
79
+ input_text_bias = "instruction: Rewrite the following sentence to remove any ableist language: 'He was confined to a wheelchair.'"
80
+ input_ids_bias = tokenizer(input_text_bias, return_tensors="pt").input_ids
81
+
82
+ with torch.no_grad():
83
+ outputs_bias = model.generate(input_ids_bias, max_new_tokens=50, num_beams=5, early_stopping=True)
84
+
85
+ decoded_output_bias = tokenizer.decode(outputs_bias[0], skip_special_tokens=True)
86
+ print(f"Input (Bias Mitigation): {input_text_bias}")
87
+ print(f"Output (Bias Mitigation): {decoded_output_bias}")