Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,87 @@
|
|
1 |
---
|
2 |
base_model: google/flan-t5-large
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
### Model
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
### Framework versions
|
201 |
-
|
202 |
-
- PEFT 0.15.2
|
|
|
1 |
---
|
2 |
base_model: google/flan-t5-large
|
3 |
library_name: peft
|
4 |
+
tags:
|
5 |
+
- text-generation
|
6 |
+
- question-answering
|
7 |
+
- bias-mitigation
|
8 |
+
- flan-t5
|
9 |
+
- lora
|
10 |
+
- peft
|
11 |
+
- disability-rights
|
12 |
+
- accessibility
|
13 |
+
- social-impact
|
14 |
---
|
15 |
|
16 |
+
# Flan-T5-Large LoRA Adapter for Disability Q&A and Mitigating Disability Biases
|
17 |
|
18 |
+
## Model Description
|
19 |
|
20 |
+
This repository contains a LoRA (Low-Rank Adaptation) adapter fine-tuned on the `google/flan-t5-large` base model. The adapter is specifically trained for **improving question-answering capabilities related to disability information and actively reducing harmful biases and stereotypes concerning people with disabilities in generated text.**
|
21 |
|
22 |
+
This model leverages the PEFT (Parameter-Efficient Fine-Tuning) library to efficiently adapt the large Flan-T5 model to this specialized domain without requiring full model retraining, making it more resource-efficient and deployable.
|
23 |
|
24 |
+
- **Developed by:** omark807
|
25 |
+
- **Finetuned from model:** `google/flan-t5-large`
|
26 |
+
- **Model type:** Adapter (LoRA) for Sequence-to-Sequence Language Model
|
27 |
+
- **Language(s) (NLP):** English
|
28 |
+
- **License:** GPL
|
29 |
|
30 |
+
### Base Model Details (`google/flan-t5-large`)
|
31 |
|
32 |
+
Flan-T5 is an instruction-tuned variant of the T5 text-to-text transformer model. It has been fine-tuned on a collection of datasets expressed as natural language instructions. The "large" version has approximately 770 million parameters. This adapter builds upon its strong instruction-following capabilities.
|
33 |
|
34 |
+
* **Original Model Card:** [https://huggingface.co/google/flan-t5-large](https://huggingface.co/google/flan-t5-large)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Uses
|
37 |
|
|
|
|
|
38 |
### Direct Use
|
39 |
|
40 |
+
This adapter is intended to be loaded alongside the `google/flan-t5-large` model using the PEFT library. It can then be used for:
|
41 |
+
|
42 |
+
* **Answering questions** related to various aspects of disability, accessibility, disability rights, legislation, and common challenges.
|
43 |
+
* **Generating responses** that are more inclusive, respectful, and free from common disability biases and stereotypes.
|
44 |
+
* **Providing information** in a neutral and empathetic tone when discussing disability-related topics.
|
45 |
+
|
46 |
+
**Example Inference for Q&A:**
|
47 |
+
```python
|
48 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
49 |
+
from peft import PeftModel, PeftConfig
|
50 |
+
import torch
|
51 |
+
|
52 |
+
# Load the base model
|
53 |
+
model_name = "google/flan-t5-large"
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
55 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
56 |
+
|
57 |
+
# Load your adapter
|
58 |
+
# Replace "your-huggingface-username/your-repo-name" with your actual model ID
|
59 |
+
adapter_model_id = "[your-huggingface-username]/[your-repo-name]"
|
60 |
+
model = PeftModel.from_pretrained(model, adapter_model_id)
|
61 |
+
model.eval() # Set model to evaluation mode
|
62 |
+
|
63 |
+
# Example inference for Q&A
|
64 |
+
# Input: "What is the Americans with Disabilities Act (ADA)?"
|
65 |
+
# Expected Output: A concise explanation of the ADA.
|
66 |
+
input_text_qa = "question: What is the Americans with Disabilities Act (ADA)?"
|
67 |
+
input_ids_qa = tokenizer(input_text_qa, return_tensors="pt").input_ids
|
68 |
+
|
69 |
+
with torch.no_grad():
|
70 |
+
outputs_qa = model.generate(input_ids_qa, max_new_tokens=100, num_beams=5, early_stopping=True)
|
71 |
+
|
72 |
+
decoded_output_qa = tokenizer.decode(outputs_qa[0], skip_special_tokens=True)
|
73 |
+
print(f"Input (Q&A): {input_text_qa}")
|
74 |
+
print(f"Output (Q&A): {decoded_output_qa}")
|
75 |
+
|
76 |
+
# Example inference for Bias Mitigation/Instruction Following
|
77 |
+
# Input: "Rewrite the following sentence to remove any ableist language: 'He was confined to a wheelchair.'"
|
78 |
+
# Expected Output: "He used a wheelchair." or similar respectful phrasing.
|
79 |
+
input_text_bias = "instruction: Rewrite the following sentence to remove any ableist language: 'He was confined to a wheelchair.'"
|
80 |
+
input_ids_bias = tokenizer(input_text_bias, return_tensors="pt").input_ids
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs_bias = model.generate(input_ids_bias, max_new_tokens=50, num_beams=5, early_stopping=True)
|
84 |
+
|
85 |
+
decoded_output_bias = tokenizer.decode(outputs_bias[0], skip_special_tokens=True)
|
86 |
+
print(f"Input (Bias Mitigation): {input_text_bias}")
|
87 |
+
print(f"Output (Bias Mitigation): {decoded_output_bias}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|