nyuuzyou commited on
Commit
2af64ff
·
verified ·
1 Parent(s): 727990d

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ru
5
+ license: apache-2.0
6
+ pipeline_tag: text-generation
7
+ base_model: HuggingFaceTB/SmolLM2-360M
8
+ datasets: nyuuzyou/EagleSFT
9
+ co2_eq_emissions:
10
+ emissions: 5484 # in grams of CO2
11
+ source: "Calculated based on power consumption and regional carbon intensity"
12
+ training_type: "fine-tuning"
13
+ geographical_location: "Saint-Petersburg, Russia"
14
+ hardware_used: "1 RTX 4090 GPU"
15
+ ---
16
+ # SmolLM2-360M-Eagle
17
+ SmolLM2-360M-Eagle is a fine-tuned version of the [SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) model on the [EagleSFT](https://huggingface.co/datasets/nyuuzyou/EagleSFT) dataset, designed to improve the model's capabilities in both Russian and English language tasks.
18
+ GGUF version of this model is available at: [SmolLM2-360M-Eagle-GGUF](https://huggingface.co/nyuuzyou/SmolLM2-360M-Eagle-GGUF)
19
+
20
+ ## Model Description
21
+ SmolLM2-360M-Eagle is a lightweight language model that has been fine-tuned specifically to handle bilingual content. This fine-tuning extends the base model's capabilities to better understand and generate content in Russian while maintaining its English competency.
22
+
23
+ ### Base Model
24
+ The model is built upon SmolLM2-360M, a compact language model with 360 million parameters that offers a good balance between performance and resource requirements.
25
+
26
+ ## Fine-tuning Details
27
+ ### Dataset
28
+ The model was fine-tuned on the EagleSFT dataset, which contains 536,231 pairs of human questions and machine-generated responses in both Russian and English languages. The dataset primarily focuses on educational content but also includes everyday questions and casual conversations.
29
+
30
+ ### Environmental Impact
31
+ - **Training duration**: 41h 14m total in Saint-Petersburg, Russia
32
+ - **Power consumption**: 380W average
33
+ - **Hardware**: 1 x RTX 4090
34
+ - **Carbon emissions**: Approximately 5.48 kg CO2eq
35
+ - Calculated based on average power consumption and average CO2eq/kWh (350g) in this region
36
+ - Saint-Petersburg: 380W * 41.23h * 350g/kWh = 5.48 kg CO2eq
37
+
38
+ ### Training Parameters
39
+ - **Training approach**: Supervised Fine-Tuning (SFT)
40
+ - **Training epochs**: 2
41
+ - **Learning rate**: 3.0e-04
42
+ - **Precision**: bfloat16
43
+
44
+ ## Limitations and Capabilities
45
+ It's important to note that this model was not pre-trained but only underwent SFT on a relatively small number of tokens. This means that the model has a limited amount of data to rely on when answering in Russian compared to its English capabilities.
46
+
47
+ Despite extensive limitations, the model shows minimal improvement in:
48
+ - Basic recognition of Russian prompts (though with frequent misunderstandings)
49
+ - Handling simple tasks formatted as "{question in Russian}, answer in English"
50
+ - Basic translation from Russian to English (though quality remains poor)
51
+
52
+ The model's minimal understanding of Russian language comes solely from the supervised fine-tuning process without any proper pre-training with Russian text corpus, resulting in severely limited capabilities.
53
+
54
+ ## Experimental Capabilities
55
+ The model demonstrates some experimental capabilities, but with significant limitations:
56
+ - Basic Russian text understanding (with frequent errors and misinterpretations)
57
+ - Limited question answering in Russian (quality significantly lower than English)
58
+ - Basic Russian to English translation (better than English to Russian)
59
+
60
+ ## Limitations
61
+ - **NOT SUITABLE FOR PRODUCTION USE**: This model should not be used in production environments in any form
62
+ - Extremely limited knowledge base for Russian language due to lack of pre-training with Russian text
63
+ - Unoptimized tokenizer performance for Russian language results in inefficient token usage
64
+ - Output quality in Russian will be unsatisfactory for most use cases
65
+ - May produce inaccurate, inconsistent, or inappropriate responses, especially in Russian
66
+ - All limitations of the base SmolLM2-360M model still apply
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.9999365409754921,
3
+ "total_flos": 3.655598871565828e+18,
4
+ "train_loss": 0.5567794406680932,
5
+ "train_runtime": 148446.9136,
6
+ "train_samples": 1071440,
7
+ "train_samples_per_second": 2.123,
8
+ "train_steps_per_second": 0.265
9
+ }
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "HuggingFaceTB/SmolLM2-360M",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 64,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 960,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 2560,
15
+ "is_llama_config": true,
16
+ "max_position_embeddings": 8192,
17
+ "mlp_bias": false,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 15,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 5,
22
+ "pad_token_id": 2,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_interleaved": false,
26
+ "rope_scaling": null,
27
+ "rope_theta": 100000,
28
+ "tie_word_embeddings": true,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.46.3",
31
+ "use_cache": false,
32
+ "vocab_size": 49152
33
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 2,
6
+ "transformers_version": "4.46.3"
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9761244cdb901a70a0f1d83c4e7ef57d74175872db84b258a7b4711fff378ed0
3
+ size 723674912
special_tokens_map.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<|im_start|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "<|im_end|>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ }
17
+ ],
18
+ "bos_token": "<|im_start|>",
19
+ "eos_token": "<|im_end|>",
20
+ "pad_token": "<|im_end|>",
21
+ "unk_token": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ }
28
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<repo_name>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<reponame>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "5": {
45
+ "content": "<file_sep>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "6": {
53
+ "content": "<filename>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "7": {
61
+ "content": "<gh_stars>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "8": {
69
+ "content": "<issue_start>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "9": {
77
+ "content": "<issue_comment>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "10": {
85
+ "content": "<issue_closed>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "11": {
93
+ "content": "<jupyter_start>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "12": {
101
+ "content": "<jupyter_text>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "13": {
109
+ "content": "<jupyter_code>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "14": {
117
+ "content": "<jupyter_output>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "15": {
125
+ "content": "<jupyter_script>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "16": {
133
+ "content": "<empty_output>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ }
140
+ },
141
+ "additional_special_tokens": [
142
+ "<|im_start|>",
143
+ "<|im_end|>"
144
+ ],
145
+ "bos_token": "<|im_start|>",
146
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
147
+ "clean_up_tokenization_spaces": false,
148
+ "eos_token": "<|im_end|>",
149
+ "model_max_length": 8192,
150
+ "pad_token": "<|im_end|>",
151
+ "tokenizer_class": "GPT2Tokenizer",
152
+ "unk_token": "<|endoftext|>",
153
+ "vocab_size": 49152
154
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 1.9999365409754921,
3
+ "total_flos": 3.655598871565828e+18,
4
+ "train_loss": 0.5567794406680932,
5
+ "train_runtime": 148446.9136,
6
+ "train_samples": 1071440,
7
+ "train_samples_per_second": 2.123,
8
+ "train_steps_per_second": 0.265
9
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c58d5af35cc5971fd44b039129b54d434fd031d9e8307dac49b46fda4307308
3
+ size 6840
vocab.json ADDED
The diff for this file is too large to render. See raw diff