--- library_name: transformers language: - en license: mit base_model: openai/whisper-large-v3-turbo tags: - base_model:adapter:openai/whisper-large-v3-turbo - lora - transformers datasets: - ntnu-smil/ami-1s-ft metrics: - wer model-index: - name: whisper-large-v3-turbo-ami-1 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/ami-1s-ft type: ntnu-smil/ami-1s-ft metrics: - type: wer value: 40.4099560761347 name: Wer --- # whisper-large-v3-turbo-ami-1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the ntnu-smil/ami-1s-ft dataset. It achieves the following results on the evaluation set: - Loss: 3.4985 - Wer: 40.4100 - Cer: 34.3391 - Decode Runtime: 0.0102 - Wer Runtime: 0.0078 - Cer Runtime: 0.0077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:--------------:|:-----------:|:-----------:| | No log | 0 | 0 | 3.9428 | 53.6237 | 39.2308 | 0.0108 | 0.0079 | 0.0071 | | 0.4259 | 0.1 | 200 | 3.3403 | 36.4934 | 30.1718 | 0.0097 | 0.0080 | 0.0074 | | 0.1836 | 0.2 | 400 | 3.3032 | 37.2255 | 32.0015 | 0.0097 | 0.0079 | 0.0072 | | 0.333 | 0.3 | 600 | 3.3810 | 38.5798 | 32.6363 | 0.0110 | 0.0084 | 0.0072 | | 0.1716 | 0.4 | 800 | 3.4782 | 39.2020 | 33.0769 | 0.0096 | 0.0081 | 0.0069 | | 0.1919 | 0.5 | 1000 | 3.4548 | 39.1654 | 33.6146 | 0.0097 | 0.0079 | 0.0071 | | 0.2053 | 0.6 | 1200 | 3.4784 | 39.6413 | 33.5848 | 0.0101 | 0.0084 | 0.0072 | | 0.126 | 0.7 | 1400 | 3.5044 | 40.3734 | 34.0553 | 0.0100 | 0.0083 | 0.0073 | | 0.331 | 0.8 | 1600 | 3.4866 | 40.0439 | 34.0777 | 0.0100 | 0.0084 | 0.0072 | | 0.1882 | 0.9 | 1800 | 3.4982 | 40.0805 | 34.1001 | 0.0100 | 0.0079 | 0.0075 | | 0.1013 | 1.0 | 2000 | 3.4985 | 40.4100 | 34.3391 | 0.0102 | 0.0078 | 0.0077 | ### Framework versions - PEFT 0.17.0 - Transformers 4.54.1 - Pytorch 2.8.0.dev20250319+cu128 - Datasets 3.6.0 - Tokenizers 0.21.4