--- library_name: peft language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/sandi2025-ds metrics: - wer model-index: - name: whisper-large-v3-sandi-train-dev-1-pure-transcript results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/sandi2025-ds type: ntnu-smil/sandi2025-ds metrics: - type: wer value: 65.39948134905774 name: Wer --- # whisper-large-v3-sandi-train-dev-1-pure-transcript This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set: - Loss: 1.0261 - Wer: 65.3995 - Cer: 213.4907 - Decode Runtime: 248.5027 - Wer Runtime: 0.1970 - Cer Runtime: 0.4672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 1024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 28 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:------:|:----:|:---------------:|:-------:|:--------:|:--------------:|:-----------:|:-----------:| | 1.9028 | 1.0357 | 7 | 1.3667 | 66.9265 | 208.4993 | 242.8888 | 0.2264 | 0.5201 | | 1.2484 | 2.0714 | 14 | 1.1791 | 77.8309 | 225.9183 | 246.8109 | 0.1974 | 0.4752 | | 1.0689 | 3.1071 | 21 | 1.0594 | 69.5579 | 217.8173 | 249.6101 | 0.1961 | 0.4627 | | 1.0336 | 4.1429 | 28 | 1.0261 | 65.3995 | 213.4907 | 248.5027 | 0.1970 | 0.4672 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.4.1+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1