--- license: llama3 library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: - nthakur/nomiracl-instruct model-index: - name: Meta-Llama-3-8B-Instruct-nomiracl-sft results: [] --- # Meta-Llama-3-8B-Instruct-nomiracl-sft This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the nthakur/nomiracl-instruct dataset. It achieves the following results on the evaluation set: - Loss: 1.6358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6576 | 0.2981 | 200 | 1.6656 | | 1.6447 | 0.5961 | 400 | 1.6409 | | 1.6245 | 0.8942 | 600 | 1.6358 | ### Framework versions - PEFT 0.7.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1