--- license: other library_name: peft tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - nthakur/miracl-raft-sft-instruct-v0.1 - nthakur/nomiracl-raft-sft-instruct-v0.1 - nthakur/miracl-en-x-raft-sft-instruct-v0.1 - nthakur/miracl-x-en-raft-sft-instruct-v0.1 base_model: meta-llama/Meta-Llama-3-8B-Instruct model-index: - name: Meta-Llama-3-8B-Instruct-miracl-mix-raft-sft-25th-apr-v1.0 results: [] --- # Meta-Llama-3-8B-Instruct-miracl-mix-raft-sft-25th-apr-v1.0 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the nthakur/miracl-raft-sft-instruct-v0.1, the nthakur/nomiracl-raft-sft-instruct-v0.1, the nthakur/miracl-en-x-raft-sft-instruct-v0.1 and the nthakur/miracl-x-en-raft-sft-instruct-v0.1 datasets. It achieves the following results on the evaluation set: - Loss: 1.3064 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4903 | 0.09 | 200 | 1.3961 | | 1.465 | 0.18 | 400 | 1.3499 | | 1.4193 | 0.28 | 600 | 1.3330 | | 1.3593 | 0.37 | 800 | 1.3232 | | 1.3552 | 0.46 | 1000 | 1.3166 | | 1.3685 | 0.55 | 1200 | 1.3123 | | 1.3487 | 0.64 | 1400 | 1.3094 | | 1.3891 | 0.74 | 1600 | 1.3076 | | 1.3858 | 0.83 | 1800 | 1.3067 | | 1.3635 | 0.92 | 2000 | 1.3064 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2