--- license: apache-2.0 library_name: mlx language: - en - fr - zh - de tags: - programming - code generation - code - codeqwen - moe - coding - coder - qwen2 - chat - qwen - qwen-coder - Qwen3-30B-A3B-Thinking-2507 - Qwen3-30B-A3B - mixture of experts - 128 experts - 8 active experts - 256k context - qwen3 - finetune - brainstorm 40x - brainstorm - thinking - reasoning - qwen3_moe - mlx base_model: DavidAU/Qwen3-53B-A3B-2507-THINKING-TOTAL-RECALL-v2-MASTER-CODER pipeline_tag: text-generation --- # Qwen3-53B-A3B-2507-THINKING-TOTAL-RECALL-v2-MASTER-CODER-1m-dwq4-mlx This model [Qwen3-53B-A3B-2507-THINKING-TOTAL-RECALL-v2-MASTER-CODER-1m-dwq4-mlx](https://huggingface.co/Qwen3-53B-A3B-2507-THINKING-TOTAL-RECALL-v2-MASTER-CODER-1m-dwq4-mlx) was converted to MLX format from [DavidAU/Qwen3-53B-A3B-2507-THINKING-TOTAL-RECALL-v2-MASTER-CODER](https://huggingface.co/DavidAU/Qwen3-53B-A3B-2507-THINKING-TOTAL-RECALL-v2-MASTER-CODER) using mlx-lm version **0.26.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-53B-A3B-2507-THINKING-TOTAL-RECALL-v2-MASTER-CODER-1m-dwq4-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```